首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis and improvement of an immersed boundary method (IBM) for simulating turbulent flows over complex geometries are presented. Direct forcing is employed. It consists in interpolating boundary conditions from the solid body to the Cartesian mesh on which the computation is performed. Lagrange and least squares high‐order interpolations are considered. The direct forcing IBM is implemented in an incompressible finite volume Navier–Stokes solver for direct numerical simulations (DNS) and large eddy simulations (LES) on staggered grids. An algorithm to identify the body and construct the interpolation schemes for arbitrarily complex geometries consisting of triangular elements is presented. A matrix stability analysis of both interpolation schemes demonstrates the superiority of least squares interpolation over Lagrange interpolation in terms of stability. Preservation of time and space accuracy of the original solver is proven with the laminar two‐dimensional Taylor–Couette flow. Finally, practicability of the method for simulating complex flows is demonstrated with the computation of the fully turbulent three‐dimensional flow in an air‐conditioning exhaust pipe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Flow computations frequently require unfavourably meshes, as for example highly stretched elements in regions of boundary layers or distorted elements in deforming arbitrary Lagrangian Eulerian meshes. Thus, the performance of a flow solver on such meshes is of great interest. The behaviour of finite elements with residual‐based stabilization for incompressible Newtonian flow on distorted meshes is considered here. We investigate the influence of the stabilization terms on the results obtained on distorted meshes by a number of numerical studies. The effect of different element length definitions within the elemental stabilization parameter is considered. Further, different variants of residual‐based stabilization are compared indicating that dropping the second derivatives from the stabilization operator, i.e. using a streamline upwind Petrov–Galerkin type of formulation yields better results in a variety of cases. A comparison of the performance of linear and quadratic elements reveals further that the inconsistency of linear elements equipped with residual‐based stabilization introduces significant errors on distorted meshes, while quadratic elements are almost unaffected by moderate mesh distortion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A comparative study of the bi‐linear and bi‐quadratic quadrilateral elements and the quadratic triangular element for solving incompressible viscous flows is presented. These elements make use of the stabilized finite element formulation of the Galerkin/least‐squares method to simulate the flows, with the pressure and velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the classical lid‐driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and the accuracy and converging rate of the different elements are compared. The influence on the numerical solution of the least square of incompressible condition is also studied. The numerical example shows that the quadratic triangular element exhibits a better compromise between accuracy and converging rate than the other two elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
On unstructured meshes, the cell‐centered finite volume (CCFV) formulation, where the finite control volumes are the mesh elements themselves, is probably the most used formulation for numerically solving the two‐dimensional nonlinear shallow water equations and hyperbolic conservation laws in general. Within this CCFV framework, second‐order spatial accuracy is achieved with a Monotone Upstream‐centered Schemes for Conservation Laws‐type (MUSCL) linear reconstruction technique, where a novel edge‐based multidimensional limiting procedure is derived for the control of the total variation of the reconstructed field. To this end, a relatively simple, but very effective modification to a reconstruction procedure for CCFV schemes, is introduced, which takes into account geometrical characteristics of computational triangular meshes. The proposed strategy is shown not to suffer from loss of accuracy on grids with poor connectivity. We apply this reconstruction in the development of a second‐order well‐balanced Godunov‐type scheme for the simulation of unsteady two‐dimensional flows over arbitrary topography with wetting and drying on triangular meshes. Although the proposed limited reconstruction is independent from the Riemann solver used, the well‐known approximate Riemann solver of Roe is utilized to compute the numerical fluxes, whereas the Green–Gauss divergence formulation for gradient computations is implemented. Two different stencils for the Green–Gauss gradient computations are implemented and critically tested, in conjunction with the proposed limiting strategy, on various grid types, for smooth and nonsmooth flow conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We present a Lagrangian formulation for finite element analysis of quasi‐incompressible fluids that has excellent mass preservation features. The success of the formulation lays on a new residual‐based stabilized expression of the mass balance equation obtained using the finite calculus method. The governing equations are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities and the pressure. The merits of the formulation in terms of reduced mass loss and overall accuracy are verified in the solution of 2D and 3D quasi‐incompressible free‐surface flow problems using the particle FEM ( www.cimne.com/pfem ). Examples include the sloshing of water in a tank, the collapse of one and two water columns in rectangular and prismatic tanks, and the falling of a water sphere into a cylindrical tank containing water. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A methodology to perform a ghost-cell-based immersed boundary method (GCIBM) is presented for simulating compressible turbulent flows around complex geometries. In this method, the boundary condition on the immersed boundary is enforced through the use of ‘ghost cells’ that are located inside the solid body. The computations of variables on these ghost cells are achieved using linear interpolation schemes. The validity and applicability of the proposed method is verified using a three-dimensional (3D) flow over a circular cylinder, and a large-eddy simulation of fully developed 3D turbulent flow in a channel with a wavy surface. The results agree well with the previous numerical and experimental results, given that the grid resolution is reasonably fine. To demonstrate the capability of the method for higher Mach numbers, supersonic turbulent flow over a circular cylinder is presented. While more work still needs to be done to demonstrate higher robustness and accuracy, the present work provides interesting insights using the GCIBM for the compressible flows.  相似文献   

8.
The purpose of this work is to introduce and validate a new staggered control volume method for the simulation of 2D/axisymmetric incompressible flows. The present study introduces a numerical procedure for solving the Navier–Stokes equations using the primitive variable formulation. The proposed method is an extension of the staggered grid methodology to unstructured triangular meshes for a control volume approach which features ease of handling of irregularly shaped domains. Two alternative elements are studied: transported scalars are stored either at the sides of an element or at its vertices, while the pressure is always stored at the centre of an element. Two interpolation functions were investigated for the integration of the momentum equations: a skewed mass-weighted upwind function and a flow-oriented exponential shape function. The momentum equations are solved over the covolume of a side or of a vertex and the pressure–velocity coupling makes use of a localized linear reconstruction of the discontinuous pressure field surrounding an element in order to obtain the pressure gradient terms. The pressure equation is obtained through a discretization of the continuity equation which uses the triangular element itself as the control volume. The method is applied to the simulation of the following test cases: backward-facing step flow, flow over a two-dimensional obstacle and flow in a pipe with sudden contraction of cross-sectional area. All numerical investigations are compared with experimental data from the literature. A grid convergence and error analysis study is also carried out for flow in a driven cavity. Results compared favourably with experimental data and so the new control volume scheme is deemed well suited for the prediction of incompressible flows in complex geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
It is well‐known that the traditional finite element method (FEM) fails to provide accurate results to the Helmholtz equation with the increase of wave number because of the ‘pollution error’ caused by numerical dispersion. In order to overcome this deficiency, a gradient‐weighted finite element method (GW‐FEM) that combines Shepard interpolation and linear shape functions is proposed in this work. Three‐node triangular and four‐node tetrahedral elements that can be generated automatically are first used to discretize the problem domain in 2D and 3D spaces, respectively. For each independent element, a compacted support domain is then formed based on the element itself and its adjacent elements sharing common edges (or faces). With the aid of Shepard interpolation, a weighted acoustic gradient field is then formulated, which will be further used to construct the discretized system equations through the generalized Galerkin weak form. Numerical examples demonstrate that the present algorithm can significantly reduces the dispersion error in computational acoustics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, residual‐based variational multiscale methods are developed for and applied to variable‐density flow at low Mach number. In particular, two different formulations are considered in this study: a standard stabilized formulation featuring SUPG/PSG/grad‐div terms and a complete residual‐based variational multiscale formulation additionally containing cross‐ and Reynolds‐stress terms as well as subgrid‐scale velocity terms in the energy‐conservation equation. The proposed methods are tested for various laminar flow test cases as well as a test case at laminar via transitional to turbulent flow stages. Stable and accurate results are obtained for all numerical examples. Substantial differences in the results between the two approaches do not become notable until a high temperature gradient is applied and the flow reaches a turbulent flow stage. The more pronounced influence of adding subgrid‐scale velocity terms to the energy‐conservation equation on the results than adding analogous terms to the momentum‐conservation equation in this situation appears particularly noteworthy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
An efficient discontinuous Galerkin formulation is applied to the solution of the linearized Euler equations and the acoustic perturbation equations for the simulation of aeroacoustic propagation in two‐dimensional and axisymmetric problems, with triangular and quadrilateral elements. To improve computational efficiency, a new strategy of variable interpolation order is proposed in addition to a quadrature‐free approach and parallel implementation. Moreover, an accurate wall boundary condition is formulated on the basis of the solution of the Riemann problem for a reflective wall. Time discretization is based on a low dissipation formulation of a fourth‐order, low storage Runge–Kutta scheme. Along the far‐field boundaries a perfectly matched layer boundary condition is used. For the far‐field computations, the integral formulation of Ffowcs Williams and Hawkings is coupled with the near‐field solver. The efficiency and accuracy of the proposed variable order formulation is assessed for realistic geometries, namely sound propagation around a high‐lift airfoil and the Munt problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A family of flux‐continuous, locally conservative, control‐volume‐distributed multi‐point flux approximation (CVD‐MPFA) schemes has been developed for solving the general geometry‐permeability tensor pressure equation on structured and unstructured grids. These schemes are applicable to the full‐tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir simulation schemes when applied to full‐tensor flow approximation. The family of flux‐continuous schemes is characterized by a quadrature parameterization. Improved numerical convergence for the family of CVD‐MPFA schemes using the quadrature parameterization has been observed for structured and unstructured grids in two dimensions. The CVD‐MPFA family cell‐vertex formulation is extended to classical general element types in 3‐D including prisms, pyramids, hexahedra and tetrahedra. A numerical convergence study of the CVD‐MPFA schemes on general unstructured grids comprising of triangular elements in 2‐D and prismatic, pyramidal, hexahedral and tetrahedral shape elements in 3‐D is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Conventional semi‐Lagrangian methods often suffer from poor accuracy and imbalance problems of advected properties because of low‐order interpolation schemes used and/or inability to reduce both dissipation and dispersion errors even with high‐order schemes. In the current work, we propose a fourth‐order semi‐Lagrangian method to solve the advection terms at a computing cost of third‐order interpolation scheme by applying backward and forward interpolations in an alternating sweep manner. The method was demonstrated for solving 1‐D and 2‐D advection problems, and 2‐D and 3‐D lid‐driven cavity flows with a multi‐level V‐cycle multigrid solver. It shows that the proposed method can reduce both dissipation and dispersion errors in all regions, especially near sharp gradients, at a same accuracy as but less computing cost than the typical fourth‐order interpolation because of fewer grids used. The proposed method is also shown able to achieve more accurate results on coarser grids than conventional linear and other high‐order interpolation schemes in the literature. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Finite elements with different orders can be used in the analysis of constrained deformable bodies that undergo large rigid body displacements. The constrained mode shapes resulting from the use of finite elements with different orders differ in the way the stiffness of the body bending and extension are defined. The constrained modes also depend on the selection of the boundary conditions. Using the same type of finite element, different sets of boundary conditions lead to different sets of constrained modes. In this investigation, the effect of the order of the element as well as the selection of the constrained mode shapes is examined numerically. To this end, the constant strain three node triangular element and the quadratic six node triangular element are used. The results obtained using the three node triangular element are compared with the higher order six node triangular element. The equations of motion for the three and six node triangular elements are formulated from assumed linear and quadratic displacement fields, respectively. Both assumed displacement fields can describe large rigid body translational and rotational displacements. Consequently, the dynamic formulation presented in this investigation can also be used in the large deformation analysis. Using the finite element displacement field, the mass, stiffness, and inertia invariants of the three and six-node triangular elements are formulated. Standard finite element assembly techniques are used to formulate the differential equations of motion for mechanical systems consisting of interconnected deformable bodies. Using a multibody four bar mechanism, numerical results of the different elements and their respective performance are presented. These results indicate that the three node triangular element does not perform well in bending modes of deformation.  相似文献   

16.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Direct or large eddy simulation of a turbulent flow field is strongly influenced by its initial or inflow boundary condition. This paper presents a new stochastic approach to generate an artificial turbulent velocity field for initial or inflow boundary condition based on digital filtering. Each velocity component of the artificial turbulent velocity field is generated by linear combination of individual uncorrelated random fields. These uncorrelated random fields are obtained by filtering random white‐noise fields. Using common elements in these linear combinations results in multi‐correlation among different velocity components. The generated velocity field reproduces locally desired Reynolds stress components and integral length scales including cross‐integral length scales. The method appears to be simple, flexible and more accurate in comparison with previously developed methods. The accuracy and performance of the method are demonstrated by numerical simulation of a homogeneous turbulent shear flow with high and low shear rates. To assess the accuracy and performance of the method, simulation results are compared with a reference simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We present an eigen‐decomposition of the quasi‐linear convective flux formulation of the completely coupled Reynolds‐averaged Navier–Stokes and turbulence model equations. Based on these results, we formulate different approximate Riemann solvers that can be used as numerical flux functions in a DG discretization. The effect of the different strategies on the solution accuracy is investigated with numerical examples. The actual computations are performed using a p‐multigrid algorithm. To this end, we formulate a framework with a backward‐Euler smoother in which the linear systems are solved with a general preconditioned Krylov method. We present matrix‐free implementations and memory‐lean line‐Jacobi preconditioners and compare the effects of some parameter choices. In particular, p‐multigrid is found to be less efficient than might be expected from recent findings by other authors. This might be due to the consideration of turbulent flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical scheme has been developed for computing fluid flow and heat transfer in periodically repeating geometries. Unstructured solution-adaptive meshes are used in a cell-centred finite volume formulation. The SIMPLE algorithm is used for pressure‒velocity coupling. For periodic flows the static pressure is decomposed into a periodic component and one that varies linearly in the streamwise direction. The latter is computed from the imposition of overall mass balance at the periodic boundary. A subiteration between the periodic pressure correction equation and the correction to the linear component is used. For heat transfer a formulation using the physical rather than the scaled temperature is employed. The scheme is applied to both laminar and turbulent computations of periodic flow and heat transfer in a variety of heat exchanger geometries; comparison with published computations and experimental data is found to be satisfactory. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号