首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ru作为Co—Mo/Al2O3加氢脱硫催化剂助剂的研究   总被引:2,自引:0,他引:2  
用Ru改性的Ru-Co-Mo/Al_2O_3对噻吩加氢脱硫的催化性能进行了考察。结果表明,与Co-Mo/Al_2O_3相比,Ru-Co-Mo/Al_2O_3的加氢脱硫活性增高。通过CO、NO吸附的红外光谱实验证实,由于Ru的加入,吸附在Co和Mo中心上的特征谱带向低波数移动,且峰强度增强,这些结果提出了在硫化态Ru-Co-Mo/Al_2O_3上,Ru中心的部分d电子转移到Co、Mo中心的周围或由于Ru的存在促进了Co、Mo中心的还原。  相似文献   

2.
Ru—Co—Mo/Al2O3还原催化剂:CO和NO吸附的红外光谱研究   总被引:1,自引:0,他引:1  
李新生  张慧 《分子催化》1992,6(4):241-247
本文采用CO、NO作为探针分子,应用红外光谱法对其在还原态Mo/Al_2O_3,Co-Mo/Al_2O_3,Ru-Mo/Al_2O_3,Ru-Co-Mo/Al_2O_3系列催化剂上的吸附态进行了表征。CO和NO在Mo,Co,Ru中心上的吸附峰随着它们的担载量增加而增强。Co和Ru作为助剂对Mo中心的吸附能力产生显著不同的影响,增加Co担载量大大减少了Mo中心的吸附NO量,并且NO在Co中心上的吸附红外谱带1775,1860 cm~(-1)位移到1800,1879 cm~(-1);而增加Ru担载量则加强了CO和NO在Mo中心上的吸附量,并使得NO在Mo中心上的吸附红外谱带1706,1812 cm~(-1)红移至1679,1801 cm~(-1)。根据实验结果,本文分别对Co和Ru的助剂功能进行了讨论。  相似文献   

3.
Experimental IR spectra of carbon monoxide adsorbed on a series of Mo/Al2O3, CoMo/Al2O3, and NiMo/Al2O3 sulfided catalysts have been compared to ab initio DFT calculations of CO adsorption on CoMo and NiMo model surfaces. This approach allows the main IR features of CO adsorbed on the sulfide phase to be assigned with an uncertainty of 15 cm(-1). On the CoMo system, the band at 2070 cm(-1) is specific of the promotion by Co and is assigned to CO interacting either with a Co atom or with a Mo atom adjacent to a Co atom. On the NiMo system, CO adsorption on Ni centers of the promoted phase leads to a high-wavenumber band at approximately 2120 cm(-1) that strongly overlaps the band at 2110 cm(-1) characteristic of nonpromoted Mo sites. For NiMo and CoMo catalysts, broad shoulders at low wave numbers (below 2060 cm(-1)) are characteristic of Mo centers adjacent to promoter atoms, indicating a partial decoration of the MoS2 edges by the promoter.  相似文献   

4.
Sonochemical preparation of Co and Ni promoted MoS(2) supported on alumina was achieved by high-intensity ultrasonic irradiation of isodurene solutions containing molybdenum carbonyl, dicobalt octacarbonyl, elemental sulfur, and Al(2)O(3) or Ni-Al(2)O(3) under Ar flow. The sonochemically prepared catalysts were characterized by elemental analysis, XPS, SEM, TEM, and XEDS, and hydrodesulfurization (HDS) activity evaluated for thiophene and dibenzothiophene substrates. The TEM studies on the sonochemically prepared catalysts indicate the formation of layered hexagonal MoS(2) (lattice fringes approximately 6.2 A) on the alumina support. The sonochemically prepared Co-Mo-S/Al(2)O(3), Ni-Mo-S/Al(2)O(3), and Co-Ni-Mo-S/Al(2)O(3) are extremely active catalysts for the HDS of thiophene and dibenzothiophene, with activities severalfold those of comparable commercial catalysts under identical conditions. The layered structure of MoS(2) remained intact after 120 h of HDS, and the catalyst is reusable.  相似文献   

5.
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2- and S2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.  相似文献   

6.
采用硝酸铝和硝酸钴的乙醇溶液与钼酸铵的碳酸铵水溶液共沉淀制备了Al2O3负载Co-Mo双金属氧化物前驱体,结合氨程序升温还原法制得了氮化物催化剂Co-Mo-N/Al2O3.利用X射线衍射和N2物理吸附方法表征了制备的前驱体和钝化态Co-Mo-N/Al2O3催化剂的晶相和孔结构,用程序升温脱附、程序升温表面反应及扫描电子显微镜考察了共沉淀法和浸渍法制备的催化剂的晶格稳定性、活性中心和表面形貌,用氨分解反应表征了Co-Mo-N/Al2O3催化剂的活性.结果表明,焙烧温度对催化剂比表面积有较大影响,低温焙烧的样品中活性组分散性较好,673K焙烧制得催化剂的氨分解活性最高.与浸渍法制备的Co-Mo-N/Al2O3催化剂相比,共沉淀法制备的催化剂具有更高的晶格稳定性、更均匀的活性组分分布和更高的氨分解活性.  相似文献   

7.
采用等体积浸渍法制备了一系列不同Co/Mo原子比的碳纳米管(CNT)负载Co Mo催化剂。将该系列催化剂用于孤岛减压渣油加氢裂化反应,评价其催化效果,并在相同反应条件下与 γAl2O3负载Co-Mo催化剂的催化性能进行比较。结果表明,Co-Mo/CNT催化剂的催化效果略低于Co-Mo/γAl2O3催化剂。Co/Mo原子比对Co-Mo/CNT催化剂的催化效果有较大的影响。与相同载体的催化剂相比,当Co/Mo原子比为0.50时,Co-Mo/CNT催化剂具有最佳的催化效果,而Co-Mo/γAl2O3催化剂在Co/Mo原子比为0.35时具有最佳的催化效果。  相似文献   

8.
It is established by using Co-Mo model sulfide catalysts, XAFS and FTIR that Co atoms constituting CoMoS phases are not oxidized by NO adsorption and that only 55% of the CoMoS phases is susceptible to NO adsorption even at the maximum coordinative unsaturation attainable under usual HDS reaction conditions (623-673 K).  相似文献   

9.
本文利用NO或/和CO吸附的TPD-MS方法, 结合IR和XPS对还原态的Co, Mo, Co-Mo/Al_2O_3催化剂进行了深入考索. 结果表明, 还原态的Co-Mo/Al_20_3表面上存在着两种吸附NO的Mo中心. 弱吸附NO(T_(max)为100 ℃)可被吸附的CO取代和强吸附NO(T_(max)为300 ℃)不能被CO取代. 同时存在三种吸附NO的CO中心, T_(max)分别为80 ℃、180 ℃和330 ℃. 前两者能吸附CO, 后者只吸附NO. IR结果对这些不同的Mo中心和Co中心的存在提供了进一步旁证. XPS结果表明提高还原温度, Mo/Al比保持恒定, 但Mo~(4+)浓度增加, 而Co/Al比却因部分Co进入Al_2O_3体相而降低。  相似文献   

10.
以脱硫选择性不同的2组催化裂化汽油加氢脱硫催化剂为研究对象, 采用CO吸附原位红外光谱表征了2组催化剂的活性相特征, 并通过分子模拟计算方法比较了助剂Co加入前后噻吩和1-己烯在催化剂表面的电荷分布、吸附能及其加氢反应的活化能等, 探讨了助剂Co的加入对选择性加氢脱硫催化剂脱硫选择性的作用机理. 结果表明, 加氢脱硫催化剂CoMoS活性相的增加有利于提高催化剂的加氢脱硫/加氢降烯烃(HDS/HYD)选择性. 与1-己烯加氢位相比, Co的加入显著提高了噻吩分子加氢位的缺电子性, 噻吩在催化剂表面的吸附度增强, 显著降低噻吩加氢反应的能垒, 从而使噻吩加氢反应更易进行. 这也表明CoMoS为高HDS活性、高HDS/HYD选择性的活性相.  相似文献   

11.
Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalyst exhibits an excellent catalytic activity and stability. XRD and EPR characterization results show that the O-S exchange might occur during the impregnation, leading to the formation of (NH4)2MoS4 (or (NH4)2MoxSy) precursor, which was then thermally decomposed and reduced to MoS2. The higher c...  相似文献   

12.
用CO和NO吸附的红外光谱表征了还原态的Ru-Co-Mo/Al_2O_3催化剂。结果表明,和Ru/Al_2O_3相比,CO吸附于Ru-Co-Mo/Al_2O_3的Ru中心上的红外谱带向高波数移动;和Co-Mo/Al_2O_3相比,CO和NO吸附在Ru-Co-Mo/Al_2O_3的Co、Mo中心上的特征谱带向低波数移动;通过TPD-IR还可看到,CO和NO在Ru-Co-Mo/Al_2O_3的吸附量及脱附温度大大地提高了。这些结果说明在Ru-Co-Mo/Al_2O_3的Ru中心上的部分电子转移到Co、Mo中心或其周围,或者Ru中心的存在促进了Co、Mo中心的还原。  相似文献   

13.
硫化态Co—Mo—K/AC合成醇催化剂的EXAFS研究   总被引:3,自引:2,他引:1  
采用XRD,EXAFS等手段考察了Co载量对催化剂结构的影响,并关联其合成醇活性,活性炭担载的硫化态Co-Mo-K样品中,Mo主要以MoS2物种形式存在于活性炭的表面上,而Co在低Co载量时主要形成 “Co-Mo-S”相,在高Co负载量会有部分类Co9S8的物相出现,经Co助剂修饰后的催化剂显示出良好的合成醇 化性能,CO助剂有利于合成C2醇,Co/Mo原子比为0.5时,表面“Co-Mo-S”相可能达到饱和,合成醇的收率也最高,Co物种是和MoS2物相以协同的方式起作用的。  相似文献   

14.
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2− and S2−2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475–0.525 exhibited optimal catalytic activity for the reaction.  相似文献   

15.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

16.
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst.  相似文献   

17.
A hydrotreating NiMo/γ-Al2O3 catalyst(12 wt% Mo and 1.1 wt% Ni) was prepared by impregnation of the support with the Anderson-type heteropolyoxomolybdate(NH4)4Ni(OH)6Mo6O18.Before impregnation of the support,it was modified with an aqueous solution of H3BO3,Co(NO3)2,or Ni(NO3)2.The catalysts were investigated using N2 adsorption,O2 chemisorption,X-ray diffraction,UV-Vis spectroscopy,Fourier transform infrared spectroscopy,temperature-programmed reduction,temperature-programmed desorption,and X-ray photoelectron spectroscopy.The addition of Co,Ni,or B influenced the Al2O3 phase composition and gave increased catalytic activity for 1-benzothiophene hydrodesulfurization(HDS).X-ray photoelectron spectroscopy confirmed that the prior loading of Ni,Co or B increased the degree of sulfidation of the NiMo/γ-Al2O3 catalysts.The highest HDS activity was observed with the NiMo/γ-Al2O3 catalyst with prior loaded Ni.  相似文献   

18.
In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT supported CoMo catalyst is transferred to a species with a formal chemical state Mo(Ⅳ) in MoS2 phase, and the rest to Mo(Ⅴ) which consists of Mo coordinated both to O and S, such as MoO2S2^2- and MoO3S^2-. In case of CoMo/γ-Al2O3 catalyst sulfided with in-situ method, a fraction of molybdenum is transferred to formal state Mo(Ⅳ) in the form of MoS2, but there is still a mount of unreduced Mo(VI) phase which is difficult to be sulfided. In CoMo/CNT catalyric system sulfided with ex-situ method, Mo(IV) in the form of MoS2 is detected along with a portion of unreduced Mo(VI) phase, suggesting that not all the Mo phases are reduced and sulfided by ex-situ method. As for CoMo/γ-Al2O3, a portion of molybdenum is sulfided to intermediate reduced state Mo(V) which consists of Mo coordinated both to O and S, such as MoO2S2^2- and MoO3S^2-, in addition, there is still a fraction of unreduced Mo(Ⅵ)phase. XPS analyses results suggest that CNT support facilitates the reduction and sulfidation of active species to a large extent, and that alumina support strongly interacts with active species, hereby producing a fraction of phase which resists complete sulfiding. Catalytic measurements of catalysts in the HDS of dibenzothiophene (DBT) show that CoMo/CNT catalysts are of higher HDS activity and selectivity than CoMo/γ-Al2O3 catalyst, which is in good relation with the sulfiding behavior of the corresponding catalyst.  相似文献   

19.
Co-K-Mo/γ-Al2O3催化剂的合成低碳醇性能及其结构研究   总被引:10,自引:0,他引:10  
氧化态K-MoO3/γ-Al2O3催化剂中添加Co(NO3)2后在空气中四个不同温度下焙烧再硫化,制得Co-K-MoO3/γAl2O3催化剂,对其CO加氢合成低碳醇的催化反应性能进行了评价,运用XRD,LRS及EXAFS等手段对催化剂及其氧化态前躯体的结构进行了表征,活性测试结果表明加Co后于500-650℃焙烧制得的催化剂活性较高,且使C2+醇比例增加,结构分析结果显示加Co后350℃焙烧时,C  相似文献   

20.
In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on the other hand show similar adsorption characteristics on both Pd/Al2O3 and Pt/Al2O3. The vibrational spectrum of the NO2- ion changed substantially upon adsorption, clearly indicating that NO2- chemisorbs onto the supported metal catalysts. On the contrary, adsorption of NH4+ does not lead to significant change in the vibrational spectrum of the ion, indicating that the NH4+ ion does not chemisorb on the noble metal but is stabilized via an electrostatic interaction. When comparing the adsorption of hydroxylamine (NH2OH(aq)) on Pd/Al2O3 and Pt/Al2O3, significant differences were observed. On Pd/Al2O3, hydroxylamine is converted into a stable NH2(ads) fragment, whereas on Pt/Al2O3 hydroxylamine is converted into NO, possibly via HNO(ads) as an intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号