首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We formulate discrete-time analogues of integrodifferential equations modelling bidirectional neural networks studied by Gopalsamy and He. The discrete-time analogues are considered to be numerical discretizations of the continuous-time networks and we study their dynamical characteristics. It is shown that the discrete-time analogues preserve the equilibria of the continuous-time networks. By constructing a Lyapunov-type sequence, we obtain easily verifiable sufficient conditions under which every solution of the discrete-time analogue converges exponentially to the unique equilibrium. The sufficient conditions are identical to those obtained by Gopalsamy and He for the uniqueness and global asymptotic stability of the equilibrium of the continuous-time network. By constructing discrete-time versions of Halanay-type inequalities, we obtain another set of easily verifiable sufficient conditions for the global exponential stability of the unique equilibrium of the discrete-time analogue. The latter sufficient conditions have not been obtained in the literature of continuous-time bidirectional neural networks. Several computer simulations are provided to illustrate the advantages of our discrete-time analogue in numerically simulating the continuous-time network with distributed delays over finite intervals.  相似文献   

2.
The problems of synchronization and pinning control for general time-delay complex dynamical networks are investigated. In this paper, less conservative criterions for both continuous-time and discrete-time complex dynamical networks with time delay are obtained. Pinning control strategies are respectively, designed to make these complex dynamical networks synchronized. Moreover, the problems of designing controllers are converted into solving optimal problems of a series of linear matrix inequalities, which reduces the computation complexity. Finally, numerical simulations verify the effectiveness of our methodology.  相似文献   

3.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

4.
A novel method called semi-discretization is employed in the formulation of discrete-time analogues of nonlinear delayed differential equations modelling cellular neural networks. The dynamical characteristics of the discrete-time analogues are studied. When the network parameters satisfy certain sufficient conditions which are independent of the delays, the discrete-time analogues for any choice on the discretization step-size are shown to be globally exponentially stable. The sufficient conditions are obtained by employing an appropriate form of Lyapunov sequences and these conditions correspond to those which have been obtained in the literature for the global exponential stability of continuous-time delayed cellular neural networks. Several examples and computer simulations are given to support our results and to demonstrate some of the advantages of the discrete-time analogues in numerically simulating their continuous-time counterparts.  相似文献   

5.
The problem of finite-time stabilizing control design for state-dependent impulsive dynamical linear systems (SD-IDLS) is tackled in this paper. Such systems are characterized by continuous-time, linear, possibly time-varying, dynamics coupled with discrete-time, linear, possibly time-varying, dynamics. The continuous-time part determines the system evolution in any time interval between two consecutive resetting events, while the discrete-time part governs its instantaneous state jump whenever the system trajectory intersects a resetting set, i.e. a region of the state space assumed to be time-independent. By making use of a quadratic control Lyapunov function, the finite-time stabilization of SD-IDLS through a static output feedback control design is specifically discussed in this paper. A sufficient and constructive result is provided based on the conical hulls of the resetting set subregions and on some cone copositivity properties of the chosen control Lyapunov function. Such a result is based on the solution of a feasibility problem that involves a set of coupled Difference/Differential Linear Matrix Inequalities (D/DLMI), which is shown to be less conservative and more numerically amenable with respect to other results available in the literature. An example illustrates the effectiveness of the proposed approach.  相似文献   

6.
In this paper, projective lag synchronization of the general complex dynamical networks with different nodes is investigated. Combining Barbalat’s lemma with adaptive control technique, the adaptive feedback controllers are constructed to achieve projective lag synchronization between the dynamical network with diverse nodes and arbitrary desired trajectory. The presented synchronization method can be applied to any complex networks. It is discovered that the update gains, the time delay, the network size and the network topology have influence on the synchronization effect. Furthermore, projective lag synchronization of the dynamical networks can still be efficiently realized in presence of noise and parameter perturbations. Corresponding numerical simulations are performed to validate the effectiveness and robustness of the proposed synchronization scheme.  相似文献   

7.
This paper demonstrates the reliability of a discrete-time analogue in preserving the exponential convergence of a bidirectional associative memory (BAM) network that is subject to nonlinear impulses. The analogue derived from a semi-discretisation technique with the value of the time-step fixed is treated as a discrete-time dynamical system while its exponential convergence towards an equilibrium state is studied. Thereby, a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency is obtained for the convergence. As special cases, one can obtain from our results, those corresponding to the non-impulsive discrete-time BAM networks and also those corresponding to continuous-time (impulsive and non-impulsive) systems. A relation between the Lyapunov exponent of the non-impulsive system and that of the impulsive system involving the size of the impulses and the inter-impulse intervals is obtained.  相似文献   

8.
This paper is concerned with stabilization of hybrid neural networks by intermittent control based on continuous or discrete-time state observations. By means of exponential martingale inequality and the ergodic property of the Markov chain, we establish a sufficient stability criterion on hybrid neural networks by intermittent control based on continuous-time state observations. Meantime, by M-matrix theory and comparison method, we show that hybrid neural networks can be stabilized by intermittent control based on discrete-time state observations. Finally, two examples are presented to illustrate our theory.  相似文献   

9.
赵雪漪 《数学杂志》2015,35(3):691-698
本文研究了含噪声的复杂动态网络的拓扑结构识别的问题.利用牵制控制(Pinning控制)方法,基于随机微分方程的理论基础,来进行网络的拓扑结构识别,设计自适应反馈控制器和识别率,来反演网络结构,通过数值仿真,获得了pinning控制方法主要是通过一部分未知节点来识别整个网络的拓扑结构的结果,噪声强度的范围将影响网络结构正确识别时的耦合强度范围,噪声强度越大,可识别的耦合强度也越大.  相似文献   

10.
姚洪兴  谢勇  王树国 《应用数学》2012,25(2):460-466
主要研究了带有时变耦合部分且非恒定节点含有变时滞复杂网络的同步问题.利用Lyapunov函数理论,设计有效的控制函数并获得一些简单的同步准则,使得属于不同簇的复杂网络能同步到任意光滑的状态.最后给以一数值仿真的例子验证了该理论的有效性.  相似文献   

11.
The present paper investigates the issues of impulsive synchronization seeking in general complex delayed dynamical networks with nonsymmetrical coupling. By establishing the extended Halanay differential inequality on impulsive delayed dynamical systems, some simple yet generic sufficient conditions for global exponential synchronization of the impulsive controlled delayed dynamical networks are derived analytically. Compared with some existing works, the distinctive features of these sufficient conditions indicate two aspects: on the one hand, these sufficient conditions can provide an effective impulsive control scheme to synchronize an arbitrary given delayed dynamical network to a desired synchronization state even if the original given network may be asynchronous itself. On the other hand, the controlled synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy, which reveals the contributions and influences of various nodes in synchronization seeking processes of the dynamical networks. It is shown that impulses play an important role in making the delayed dynamical networks globally exponentially synchronized. Furthermore, the results are applied to a typical nearest-neighbor unidirectional time-delay coupled networks composed of chaotic FHN neuron oscillators, and numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

12.
In this paper, we investigate the exponential stability of discrete-time static neural networks with impulses and variable time delay. The discrete-time neural networks are derived by discretizing the corresponding continuous-time counterparts with implicit-explicit-θ (IMEX-θ) method. The impulses are classified into three classes: input disturbances, stabilizing and “neutral” type— the impulses are neither helpful for stabilizing nor destabilizing the neural networks, and then by using a very excellent ideology introduced recently the connections between the impulses and the utilized Lyapunov function are fully explored with respect to each type of impulse. New analysis techniques that used to realize the ideology in discrete-time situation are proposed and it is shown that they are essentially different from the ones used in continuous-time case. Several criteria for global exponential stability of the static neural networks in discrete-time case are established in terms of linear matrix inequalities (LMIs) and numerical simulations are given to validate the obtained theoretical results.  相似文献   

13.
Discrete-time analogue of mutualism model is introduced. The discrete-time analogues is considered to be numerical discretization of the continuous-time models and we study their dynamical characteristics. It is shown that the discrete-time analogues preserve the periodicity of the continuous-time models.  相似文献   

14.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

15.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

16.
In this paper, simple controllers are designed to realize the synchronization of complex networks with time delays, in which the coupling configuration matrix and inner coupling matrix are not restricted to be symmetric matrix. Several adaptive synchronization criteria are obtained based on Lyapunov stability theory. These criteria relay on the coupling strength and the number of nodes pinning to the networks. For a given complex dynamical network with both delayed and non-delayed couplings, we give the minimum number of controllers under which synchronization can be achieved. One example shows the effectiveness of the proposed pinning adaptive controller.  相似文献   

17.
This paper mainly investigates the lag synchronization of complex networks via pinning control. Without assuming the symmetry and irreducibility of the coupling matrix, sufficient conditions of lag synchronization are obtained by adding controllers to a part of nodes. Particularly, the following two questions are solved: (1) How many controllers are needed to pin a coupled complex network to a homogeneous solution? (2) How should we distribute these controllers? Finally, a simple example is provided to demonstrate the effectiveness of the theory.  相似文献   

18.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

19.
An optimal control scheme is proposed to stabilize complex networks in finite time. Furthermore, since it is costly and impractical to control a network by applying controllers to all the nodes, an algorithm inspired by Kalmans controllability rank condition is presented for local stabilization by locating pinned components. Numerical examples are provided to illustrate the effectiveness of the proposed method as well as its superiority over a traditional pinning control technique. This work offers a theoretical framework for designing optimal controllers to stabilize networks in finite time with reduced control cost. © 2016 Wiley Periodicals, Inc. Complexity 21: 417–425, 2016  相似文献   

20.
Tracking analysis problem is studied for general linearly coupled dynamical systems in this paper. One challenging and essential question for this issue is that: At least how many nodes should be informed about the objective tracking signal? This paper is devoted to answer this question. Two dynamical network models are considered. The first one, each individual has its own dynamics and simultaneously influenced by its neighbors’ information. The dynamics of itself could be stable, periodic, semi-periodic, and chaotic. The second one, each individual update its state just according to the error states different from its communicated neighbors. The main contribution of this paper is that the minimum number of controllers is designed to force the state of each agent to the desired objective by fully utilizing the structure of the network. The convergence rate can also be estimated. The topology of the underlying network can be directed and hierarchical. Some simple criteria are given to judge whether the tracking control can be successful. In addition, numerical examples are given to show the validity of the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号