首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intracomplex electron transfer (ET) occurs most often in intrinsically transient, low affinity complexes. As a result, the means by which adequate specificity and reactivity are obtained to support effective ET is still poorly understood. We report here on two such ET complexes: cytochrome b5 (cyt b5) in reaction with its physiological partners, myoglobin (Mb) and hemoglobin (Hb). These complexes obey the Dynamic Docking (DD) paradigm: a large ensemble of weakly bound protein-protein configurations contribute to binding in the rapid-exchange limit, but only a few are ET-active. We report the ionic-strength dependence of the second-order rate constant, k2, for photoinitiated ET from within all four combinations of heme-neutralized Zn deuteroporphyrin-substituted Mb/alphaHb undergoing ET with cyt b5, the four "corners" of a "heme-neutralization square". These experiments provide insights into the relative importance of both global and local electrostatic contributions to the binding of reactive configurations, which are too few to be observed directly. To interpret the variations of k2 arising from heme neutralization, we have developed a procedure by which comparisons of the ET rate constants for a heme-neutralization square permit us to decompose the free energy of reactive binding into individual local electrostatic contributions associated with interactions between (i) the propionates of the two hemes and (ii) the heme of each protein with the polypeptide of its partner. Most notably, we find the contribution from the repulsion between propionates of partner hemes to the reactive binding free energy to be surprisingly small, DeltaG(Hb) approximately +1 kcal/mol at ambient temperature, 18 mM ionic strength, and we speculate about possible causes of this observation. To confirm the fundamental assumption of these studies, that the structure of a heme-neutralized protein is unaltered either by substitution of Zn or by heme neutralization, we have obtained the X-ray structure of ZnMb prepared with the porphyrin dimethyl ester and find it to be nearly isostructural with the native protein.  相似文献   

2.
Horse myoglobin (Mb) provides a convenient "workbench" for probing the effects of electrostatics on binding and reactivity in the dynamic [Mb, cytochrome b(5)] electron-transfer (ET) complex. We have combined mutagenesis and heme neutralization to prepare a suite of six Mb surface-charge variants: the [S92D]Mb and [V67R]Mb mutants introduce additional charges on the "front" face, and incorporation of the heme di-ester into each of these neutralizes the charge on the heme propionates which further increases the positive charge on the "front" face. For this set of mutants, the nominal charge of Mb changes by -1 to +3 units relative to that for native Mb. For each member of this set, we have measured the bimolecular quenching rate constant (k(2)) for the photoinitiated (3)ZnDMb --> Fe(3+)b(5) ET reaction as a function of ionic strength. We find: (i) a dramatic decoupling of binding and reactivity, in which k(2) varies approximately 10(3)-fold within the suite of Mbs without a significant change in binding affinity; (ii) the ET reaction occurs within the "thermodynamic" or "rapid exchange" limit of the "Dynamic Docking" model, in which a large ensemble of weakly bound protein-protein configurations contribute to binding, but only a few are reactive, as shown by the fact that the zero-ionic-strength bimolecular rate constant varies exponentially with the net charge on Mb; (iii) Brownian dynamic docking profiles allow us to visualize the microscopic basis of dynamic docking. To describe these results we present a new theoretical approach which mathematically combines PATHWAY donor/acceptor coupling calculations with Poisson-Boltzmann-based electrostatics estimates of the docking energetics in a Monte Carlo (MC) sampling framework that is thus specially tailored to the intermolecular ET problem. This procedure is extremely efficient because it targets only the functionally active complex geometries by introducing a "reactivity filter" into the computations themselves, rather than as a subsequent step. This efficiency allows us to employ more computationally expensive and accurate methods to describe the relevant intermolecular interaction energies and the protein-mediated donor/acceptor coupling interactions. It is employed here to compute the changes in the bimolecular rate constant for ET between Mb and cyt b(5) upon variations in the myoglobin surface charge, pH, and ionic strength.  相似文献   

3.
The reconstituted zinc-myoglobin (ZnMb) dyads, ZnMb-[M(II)(edta)], have been prepared by incorporating a zinc-porphyrin (ZnP) cofactor modified with ethylenediaminetetraacetic acid (H(4)edta) into apo-Mb. In case of the monomeric ZnP(edta) cofactor coordinated by one pyridine molecule, ZnP(py)(edta), a spontaneous 1:1 complex with a transient metal ion was formed in an aqueous solvent, and the photoexcited singlet state of ZnP, (1)(ZnP)*, was quenched by the [Cu(II)(edta)] moiety through intramolecular photoinduced electron-transfer (ET) reaction. The rate constant for the intramolecular quenching ET (k(q)) at 25 degrees C was successfully obtained as k(q) = 5.1 x 10(9) s(-1). In the case of Co(2+), Ni(2+), and Mn(2+), intersystem crossing by paramagnetic effect was mainly considered between (1)(ZnP)* and the [M(II)(edta)] complex. For the ZnMb-[M(II)(edta)] systems, the intramolecular ET reaction between the excited singlet state of (1)(ZnMb)* and the [Cu(II)(edta)] moieties provided the slower quenching rate constant, k(q) = 2.1 x 10(8) s(-1), compared with that of the ZnP(py)(edta) one. Kinetic studies also presented the efficient fluorescence quenching of the (1)(ZnMb)*-[Co(II)(edta)] dyad. Our study clearly demonstrates that wrapping of the ZnP cofactor by the apoprotein matrix and synthetic manipulation at the Mb surface ensure metal ion-sensitive fluorescent dynamics of ZnMb and provides valuable information to elucidate the complicated mechanism of the biological photoinduced ET reactions of hemoproteins.  相似文献   

4.
The physiological electron-transfer (ET) partners, cytochrome c peroxidase (CcP) and cytochrome c (Cc)1, can be modified to exhibit photoinitiated ET through substitution of Zn (or Mg) for Fe in either partner. Laser excitation of the Zn-porphyrin (ZnP) to its triplet excited state (3ZnP) initiates direct heme-heme ET to the ferriheme center of its partner across the protein-protein interface. This photoinitiated ET produces the charge-separated intermediate, I = [ZnP+CcP, Fe2+Cc], with a metalloporphyrin pi-cation radical (ZnP+) in the donor protein and a ferroheme acceptor protein. I, in general, is thought to return to the ground state by a thermal ET process that involves direct heme-heme back-ET to complete a simple photocycle. We here contrast intracomplex ET between yeast iso-1 Cc and ZnCcP(WT) (wild-type) with that for two ZnCcP(X) variants: X = W191F, with redox-active W191 replaced by Phe; WYM4, a W191F mutant with further replacement of four other potentially redox-active sites (W51F, Y187F, Y229F, and Y236F). The results show that W191 acts as an ET mediator, which "short-circuits" the direct heme-heme back-ET through a two-step, hopping process in which the ZnP+ cation radical formed by photoinitiated ET rapidly oxidizes W191, and the resultant W191+, in turn, rapidly oxidizes Fe2+Cc.  相似文献   

5.
We have investigated the photoinduced electron transfer (ET) in the 1:1 cross-linked complex (CL-ZnMb/b(5)) formed by a cross-linking reagent, EDC, between Zn-substituted myoglobin (ZnMb) and cytochrome b(5) (Cytb(5)) to reveal the mechanism of the inter-protein ET reactions under the condition of multiple encounter complexes. A variety of the ZnMb-Cytb(5) orientations was suggested because of failure to identify the single and specific cross-linking site on Cytb(5) by the peptide-mapping analysis using mass spectrometry. In CL-ZnMb/b(5), a laser pulse generates the triplet excited state of the ZnMb domain ((3)ZnMb()), which can transfer one electron to the Cytb(5) domain. The decay kinetics of (3)ZnMb() in CL-ZnMb/b(5) consists of a facile power-law ET phase to Cytb(5) domain ( approximately 30%) and a slower single-exponential phase ( approximately 70%). The application of the Marcus equation to this power-law phase indicates that CL-ZnMb/b(5) has a variety of ZnMb-Cytb(5) orientations for the facile ET in which the distance between the redox centers (D-A distance) is distributed over 13-20 A. The single-exponential phase in the (3)ZnMb() decay kinetics of CL-ZnMb/b(5) is similar to the intrinsic decay of (3)ZnMb() in its rate constant, 65 s(-)(1). This implies that the ET is impeded in about 70% of the total ZnMb-Cytb(5) orientations due to the D-A distance larger than 20 A. Combined with the results of the Brownian dynamics simulations for the encounter complexes, the overall bimolecular ET rate, k(app), can be reproduced by the sum of the ET rates for the minor encounter complexes of which D-A distance is less than 20 A. On the other hand, the encounter complexes with longer D-A distance, which are the majority of the encounter complexes between ZnMb and Cytb(5), have little contribution to the overall bimolecular ET rate. These observations experimentally demonstrate that ZnMb forms a variety of encounter complexes with Cytb(5), among which a minor set of the complexes with the shorter D-A distance (< approximately 20 A) regulates the overall bimolecular ET between the proteins.  相似文献   

6.
Three types of reconstituted met- and zinc-myoglobin (metMb and ZnMb) dyads, ZnMbAc(4)Me+, ZnMbAc(6)Me+, and metMbAc(6) have been prepared by incorporating chemically modified metalloporphyrin cofactor appending an acridine (Ac) or a methylacridinium ion ([AcMe]+) into apo-Mb. In the bimolecular system between ZnMb and [AcMe]+, the photoexcited triplet state of ZnMb, 3(ZnMb)*, was successfully quenched by [AcMe]+ to form the radical pair of ZnMb cation (ZnMb*+) and reduced methylacridine ([AcMe]*), followed by a thermal back ET reaction. The rate constants for the intermolecular quenching ET (kq) and the back ET reaction (kb) at 25 degrees C were successfully obtained as kq = (8.8 +/- 0.4) x 10(7) M(-1) s(-1) and kb = (1.2 +/- 0.1) x 10(8) M(-1) s(-1), respectively. On the other hand, in case of the intramolecular photoinduced ET reactions of ZnMbAc(4)Me+ and ZnMbAc(6)Me+ dyads, the first-order quenching rate constants (kET) of 3(ZnMb)* by [AcMe]+ moiety were determined to be kET = 2.6 x 10(3) and 2.5 x 10(3) s(-1), respectively. When such ET occurs along the alkyl spacer via through-bond mechanism at the surface of Mb, the obtained kET is reasonable to provide decay constant of beta (1.0-1.3 A(-1)). Upon photoirradiation of [AcMe]+ moiety, kinetic studies also presented the intramolecular quenching reactions from the excited singlet state, 1([AcMe]+)*, whose likely process is the photoinduced energy-transfer reaction. For metMbAc(6) dyad, steady-state fluorescence was almost quenched, while the signal around 440 nm gradually appeared in the presence of various concentrations of DNA. Our study implies that synthetic manipulation at the Mb surface, by using an artificial DNA-binder coupled with photoinduced reaction, may provide valuable information to construct new Mb-DNA complex and sensitive fluorescent for DNA.  相似文献   

7.
The present investigation reports the first experimental measurements of the reorganization energy of unfolded metalloprotein in urea solution. Horse heart cytochrome c (cyt c) has been found to undergo reversible one-electron transfer reactions at pH 2 in the presence of 9 M urea. In contrast, the protein is electrochemically inactive at pH 2 under low-ionic strength conditions in the absence of urea. Urea is shown to induce ligation changes at the heme iron and lead to practically complete loss of the alpha-helical content of the protein. Despite being unfolded, the electron-transfer (ET) kinetics of cyt c on a 2-mercaptoethanol-modified Ag(111) electrode remain unusually fast and diffusion controlled. Acid titration of ferric cyt c in 9 M urea down to pH 2 is accompanied by protonation of one of the axial ligands, water binding to the heme iron (pK(a) = 5.2), and a sudden protein collapse (pH < 4). The formal redox potential of the urea-unfolded six-coordinate His18-Fe(III)-H(2)O/five-coordinate His18-Fe(II) couple at pH 2 is estimated to be -0.083 V vs NHE, about 130 mV more positive than seen for bis-His-ligated urea-denatured cyt c at pH 7. The unusually fast ET kinetics are assigned to low reorganization energy of acid/urea-unfolded cyt c at pH 2 (0.41 +/- 0.01 eV), which is actually lower than that of the native cyt c at pH 7 (0.6 +/- 0.02 eV), but closer to that of native bis-His-ligated cyt b(5) (0.44 +/- 0.02 eV). The roles of electronic coupling and heme-flattening on the rate of heterogeneous ET reactions are discussed.  相似文献   

8.
A supramolecular conjugate of myoglobin (Mb) and water‐soluble poly(acrylate), (PA5k and PA25k, where 5k and 25k represent the molecular weight of the polymers, respectively), is constructed on the basis of a noncovalent heme‐heme pocket interaction. The modified heme with an amino group linked to the terminus of one of the heme‐propionates is coupled to the side‐chain carboxyl groups of poly(acrylate) activated by N‐hydroxysuccinimide. The ratios of the heme‐modified monomer unit and the unmodified monomer unit (m:n) in the polymer chains of Heme‐PA5k and Heme‐PA25k were determined to be 4.5:95.5 and 3.1:96.9, respectively. Subsequent addition of apoMb to the conjugated polymers provides Mb‐connected fibrous nanostructures confirmed by atomic force microscopy. A mixture of the heme‐modified polymer and dimeric apomyoglobin as a cross‐linker forms a microgel in which the reconstituted myoglobin retains its native exogenous ligand binding activity.  相似文献   

9.
Two stable electron donor-acceptor conjugates, that is, 3 and 5b, employing La(2)@I(h)-C(80) and Sc(3)N@I(h)-C(80), on one hand, and zinc tetraphenylporphyrin, on the other hand, have been prepared via [1+2] cycloaddition reactions of a diazo precursor. Combined studies of crystallography and NMR suggest a common (6,6)-open addition pattern of 3 and 5b. Still, subtly different conformations, that is, a restricted and a comparatively more flexible topography, emerge for 3 and 5b, respectively. In line with this aforementioned difference are the electrochemical assays, which imply appreciably stronger I(h)-C(80)/ZnP interactions in 3 when compared to those in 5b. Density functional calculations reveal significant attractions between the two entities of these conjugates, as well as their separately localized HOMOs and LUMOs. The geometrical conformations and LUMO distributions of 3 and 5b, at our applied computational level, are slightly varied with their different endohedral clusters. The clusters also exert different impact on the excited state reactivity of the conjugates. For example, 3 undergoes, upon photoexcitation, a fast charge separation process and yields a radical ion pair, whose nature, namely, (La(2)@C(80))(?-)-(ZnP)(?+)) versus (La(2)@C(80))(?+)-(ZnP)(?-)), varies with solvent polarity. 5b, on the other hand, afforded the same (Sc(3)N@C(80))(?-)-(ZnP)(?+)) radical ion pair regardless of the solvent.  相似文献   

10.
Wirtz M  Oganesyan V  Zhang X  Studer J  Rivera M 《Faraday discussions》2000,(116):221-34; discussion 257-68
The reduction potential of cytochrome b5 is modulated via the formation of a complex with polylysine at the electrode surface (Rivera et al., Biochemistry, 1998, 37, 1485). This modulation is thought to originate from the neutralization of a solvent exposed heme propionate and from dehydration of the complex interface. Although direct evidence demonstrating that neutralization of the charge on the heme propionate contributes to the modulation of the redox potential of cytochrome b5 has been obtained, evidence demonstrating that water exclusion from the complex interface plays a similar role has not been conclusive. Herein we report the preparation of the V45I/V61I double mutant of rat liver outer mitochondrial membrane (OM) cytochrome b5. This mutant has been engineered with the aim of restricting water accessibility to the exposed heme edge of cytochrome b5. The X-ray crystal structure of the V45I/V61I mutant revealed that the side chain of Ile at positions 45 and 61 restricts water accessibility to the interior of the heme cavity and protects a large section of the heme edge from the aqueous environment. Electrochemical studies performed with the V45I/V61I mutant of cytochrome b5, and with a derivative in which the heme propionates have been converted into the corresponding dimethyl ester groups, clearly demonstrate that dehydration of the heme edge contributes to the modulation of the reduction potential of cytochrome b5. In fact, these studies showed that exclusion of water from the complex interface exerts an effect (approximately 40 mV shift) that is comparable, if not larger, than the one originating from neutralization of the charge on the solvent exposed heme propionate (approximately 30 mV shift).  相似文献   

11.
12.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

13.
Dehaloperoxidase (DHP) is a globular heme enzyme found in the marine worm Amphitrite ornata that can catalyze the dehalogenation of halophenols to the corresponding quinones by using hydrogen peroxide as a cosubstrate. Its three-dimensional fold is surprisingly similar to that of the oxygen storage protein myoglobin (Mb). A key structural feature common to both DHP and Mb is the existence of multiple conformations of the distal histidine. In DHP, the conformational flexibility may be involved in promotion of substrate and cosubstrate entry and exit. Here we have explored the dynamics of substrate binding in DHP using Fourier transform infrared spectroscopy and flash photolysis. A number of discrete conformations at the active site were identified from the appearance of multiple CO absorbance bands in the infrared region of the spectrum. Upon photolysis at cryogenic temperatures, the CO molecules are trapped at docking sites within the protein matrix, as inferred from the appearance of several photoproduct bands characteristic of each site. Substrate binding stabilizes the protein by approximately 20 kJ/mol. The low yield of substrate-bound DHP at ambient temperature points toward a steric inhibition of substrate binding by carbon monoxide.  相似文献   

14.
The di-heme protein Pseudomonas stutzeri cytochrome c(4) (cyt c(4)) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local environments. Intramolecular ET in homogeneous solution is too slow (>10 s) to be detected but fast (ms-μs) intramolecular ET in an electrochemical environment has recently been achieved by controlling the molecular orientation of the protein assembled on a gold electrode surface. In this work we have performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms ("gating") and driving force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe-Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl group was also found to enhance the ET rate significantly. The results are discussed in relation to the observed surface immobilization effect and support the notion of conformationally gated ET.  相似文献   

15.
Electrospray ionization mass spectrometry (ESI‐MS) was employed to monitor the heme release and the conformational changes of myoglobin (Mb) under different solvent conditions, and to observe ligand bindings of Mb. ESI‐MS, complemented by circular dichroism and fluorescence spectroscopy, was used to study the mechanism of acid‐ and organic solvent‐induced denaturation by probing the changes in the secondary and the tertiary structure of Mb. The results obtained show that complete disruption of the heme–protein interactions occurs when Mb is subjected to one of the following solution conditions: pH 3.2–3.6, or solution containing 20–30% acetonitrile or 40–50% methanol. Outside these ranges, Mb is present entirely in its native state (binding with a heme group) or as apomyoglobin (i.e. without the heme). Spectroscopic data demonstrate that the denaturation mechanism of Mb induced by acid may be significantly different from that by the organic solvent. Low pH reduces helices in Mb, whereas certain organic content level in solution results in the loss of the tertiary structure. ESI‐MS conditions were established to observe the H2O‐ and CO‐bound Mb complexes, respectively. H2O binding to metmyoglobin (17 585 Da), where the heme iron is in the ferric oxidation state, is observed in ESI‐MS. CO binding to Mb (17 595 Da), on the other hand, can be only observed after the heme iron is reduced to the ferrous form. Therefore, ESI‐MS combined with spectroscopic techniques provides a useful means for probing the formation of ligand‐binding complexes and characterizing protein conformational changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Accurate force fields are essential for describing biological systems in a molecular dynamics simulation. To analyze the docking of the small redox protein cytochrome c (cyt c) requires simulation parameters for the heme in both the reduced and oxidized states. This work presents parameters for the partial charges and geometries for the heme in both redox states with ligands appropriate to cyt c. The parameters are based on both protein X-ray structures and ab initio density functional theory (DFT) geometry optimizations at the B3LYP/6-31G* level. The simulations with the new parameter set reproduce the geometries of the X-ray structures and the interaction energies between water and heme prosthetic group obtained from B3LYP/6-31G* calculations. The parameter set developed here will provide new insights into docking processes of heme containing redox proteins.  相似文献   

17.
A novel matrix based on commercially available carbon black (CB) N220 and didodecyldimethyl ammonium bromide (DDAB) was shown to be a reliable support for direct electron transfer reactions between screen printed electrode (SPE) and Fe(III)‐heme proteins. Cytochrome c (cyt c), myoglobin (Mb), horseradish peroxidase (HRP) and cytochromes P450 (CYP 51A1, CYP 3A4, CYP 2B4) generated well‐shaped cyclic voltammograms on SPE/CB/DDAB electrodes (both in solution and in immobilized state). The attractive performance characteristics of CB modified electrodes are advantageous over single‐walled carbon nanotubes (SW CNT) based ones. The achieved direct electrochemistry of heme proteins on CB/DDAB‐modified electrodes provided successful elaboration of the immunosensor for cardiac Mb. The immunosensor showed applicability for diagnostics of myocardial infarction displaying significant difference in cardiac Mb content of human blood plasma samples taken from the corresponding patients.  相似文献   

18.
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O(2). These results shall facilitate investigations of HNO bindings in other heme proteins.  相似文献   

19.
本文通过牛肝线粒体细胞色素Tb5和它的F35Y突变体蛋白相对分子质量的外标法测定,得到细胞色素Tb5全蛋白的相对分子质量为10077.5脱辅基蛋白的相对分子质量为9461.4F35Y突变体蛋白的相对分子质量为10093.6,它的脱辅基蛋白的相对分子质量为9477.5,不同nozzle电压下的电喷雾质谱结果表明,该电压的大小明显影响蛋白肽链与血红素辅基之间的非共价结合,随着电压的降低,全蛋白谱峰的强度逐渐增大,然而,过低的电压导致了Na^+,K^+离子加合峰相对强度的增加,而不利于谱图分析。同时,考察到细胞色素Tb5在甲醇溶液和酸性溶液中的变性行为,因此选择nozzle电压70V,10%的甲醇水溶液和pH=7为得到全蛋白质谱峰的最佳条件。相同实验条件下得到的野生型CytTb5和F35Y突变体全蛋白的质谱峰相比较,其相对丰度有悬殊的差异,表明F35Y突变体蛋白的血红素结合能力明显低于野生型蛋白。通过解离出的Hemeb的分子离子峰进行解析,证明铁仍以三价离子存在于血红素辅基中。  相似文献   

20.
Dioxygen accelerates back electron transfer (BET) processes between a fullerene radical anion (C60) and a radical cation of zinc porphyrin (ZnP) in photolytically generated ZnP.+-C60.- and ZnP.+-H2P-C60.- radical ion pairs. The rate constant of BET increases linearly with increasing oxygen concentration without, however, forming reactive oxygen species, such as singlet oxygen or superoxide anion. When ferrocene (Fc) is used as a terminal electron donor moiety instead of ZnP (i.e., Fc-ZnP-C60), no catalytic effects of dioxygen were, however, observed for the BET in Fc+-ZnP-C60.-, that is, from C60.- to the ferricenium ion. In the case of ZnP-containing C60 systems, the partial coordination of O2 to ZnP.+ facilitates an intermolecular electron transfer (ET) from C60.- to O2. This rate-determining ET step is followed by a rapid intramolecular ET from O2.- to ZnP.+ in the corresponding O2.--ZnP.+ complex and hereby regenerating O2. In summary, O2 acts as a novel catalyst in accelerating the BET of the C60.--ZnP.+ radical ion pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号