首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The star product technique translates the framework of local fields on noncommutative spacetime into nonlocal fields on standard spacetime. We consider the example of fields on κ-deformed Minkowski space, transforming under κ-deformed Poincaré group, with noncommutative parameters. By extending the star product to the tensor product of functions on κ-deformed Minkowski space and κ-deformed Poincaré group we represent the algebra of noncommutative parameters of deformed relativistic symmetries by functions on classical Poincaré group.  相似文献   

2.
We propose Weil and Cartan models for the equivariant cohomology of noncommutative spaces which carry a covariant action of Drinfel’d twisted symmetries. The construction is suggested by the noncommutative Weil algebra of Alekseev and Meinrenken (2000) [5]; we show how to implement a Drinfel’d twist of their models in order to take into account the noncommutativity of the spaces we are acting on. We also provide basic examples and properties of the twisted noncommutative equivariant cohomology.  相似文献   

3.
We suggest that trialgebraic symmetries might be a sensible starting point for a notion of integrability for two dimensional spin systems. For a simple trialgebraic symmetry we give an explicit condition in terms of matrices which a Hamiltonian realizing such a symmetry has to satisfy and give an example of such a Hamiltonian which realizes a trialgebra recently given by the authors in another paper. Besides this, we also show that the same trialgebra can be realized on a kind of Fock space of q-oscillators, i.e. the suggested integrability concept gets via this symmetry a close connection to a kind of noncommutative quantum field theory, paralleling the relation between the integrability of spin chains and two dimensional conformal field theory.  相似文献   

4.
We present noncommutative topology as a basis for noncommutative geometry phrased completely in terms of partially ordered sets with operations. In this note we introduce a noncommutative space-time starting from a dynamical system of noncommutative topologies based on the notion of temporal points. At every moment a commutative topological space is constructed and it is shown to approximate the noncommutative space in sheaf theoretical terms; this so called moment space should be the space where observed phenomena should be described, the commutative shadow of the noncommutative space is to be thought of as the usual space-time.  相似文献   

5.
We study generalized symmetry transformations which involve nonassociative and noncommutative parameters. The structure underlying the group gradings is determined and examples are given. Graded algebras beyond Grassmann algebras are also presented. Nontrivial examples relevant for graded extensions beyond supersymmetry are given which resemble several features of quarks and might lead to a connection between the external and internal symmetries of the phenomenological models. Lie groups of transformations involving nonassociative and noncommutative parameters are obtained together with their corresponding graded Lie algebraic structures.  相似文献   

6.
We study noncommutative vortex solutions that minimize the action functional of the Abelian Higgs model in 2-dimensional noncommutative Euclidean space. We first consider vortex solutions which are deformed from solutions defined on commutative Euclidean space to the noncommutative one. We construct solutions whose vortex numbers are unchanged under the noncommutative deformation. Another class of noncommutative vortex solutions via a Fock space representation is also studied.  相似文献   

7.
We study Dirac oscillator in 2+1 dimensional noncommutative space. The model is solved exactly and the relationship with Jaynes-Cummings (JC) or anti-Jaynes-Cummings (AJC) models are investigated. We find that for a positive noncommutative parameter, there is an exact map from the 2+1 dimensional noncommutative Dirac oscillator to AJC model. However, for a negative noncommutative parameter, the noncommutative planar Dirac oscillator contains both AJC and JC terms simultaneously. Our investigation may afford a new way to study relativistic quantum mechanics models in noncommutative space by means of quantum optics method, and vice verse.  相似文献   

8.
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein-Gordon equation and Dirac equation. We investigate the scalar field and φ4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.  相似文献   

9.
In this paper, we construct the noncommutative B and C type KP hierarchies using pseudo-differential operators and reducing conditions. Further a series of additional flows of the noncommutative B and C type KP hierarchies will be defined and the additional symmetries constitute the B and C type infinite dimensional Lie algebra W1+∞. In addition, the generating function of the additional symmetries can also be proved to have a nice form in terms of wave functions. Further, the string equations of the noncommutative B and C type KP hierarchies are derived.  相似文献   

10.
We construct integrable generalizations of the elliptic Calogero-Sutherland-Moser model of particles with spin, involving noncommutative spin interactions. The spin coupling potential is a modular function and, generically, breaks the global spin symmetry of the model down to a product of U(1) phase symmetries. Previously known models are recovered as special cases.  相似文献   

11.
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton–Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.  相似文献   

12.
We study the noncommutative geometrical structures of quantum entangled states. We show that the space of a pure entangled state is a noncommutative space. In particular we show that by rewriting the coordinate ring of a conifold or the Segre variety we can get a q-deformed relation in noncommutative geometry. We generalized our construction into a multi-qubit state. We also in detail discuss the noncommutative geometrical structure of a three-qubit state.  相似文献   

13.
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.  相似文献   

14.
We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M × F, where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.  相似文献   

15.
We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric multipole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field we give the Schrödinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schrödinger equations, we obtain quantum phases of the electric multipole moment both on a noncommutative space and a noncommutative phase space. We demonstrate that these phase are geometric and dispersive.  相似文献   

16.
We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive.  相似文献   

17.
We discuss two examples of classical mechanical systems which can become quantum either because of degeneracy of an integral of motion or because of tuning parameters at resonance. In both examples, the commutativity of the symmetry algebra is breaking, and noncommutative symmetries arise. Over the new noncommutative algebra, the system can reveal its quantum behavior including the tunneling effect. The important role is played by the creation-annihilation regime for the perturbation or anharmonism. Activation of this regime sometimes needs in an additional resonance deformation (Cartan subalgebra breaking).  相似文献   

18.
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics ofa particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.  相似文献   

19.
20.
We illustrate an isomorphic representation of the observable algebra for quantum mechanics in terms of the functions on the projective Hilbert space, and its Hilbert space analog, with a noncommutative product in terms of explicit coordinates and discuss the physical and dynamical picture. The isomorphism is then used as a base for the translation of the differential symplectic geometry of the infinite dimensional manifolds onto the observable algebra as a noncommutative geometry. Hence, we obtain the latter from the physical theory itself. We have essentially an extended formalism of the Schr̎odinger versus Heisenberg picture which we describe mathematically as like a coordinate map from the phase space, for which we have presented argument to be seen as the quantum model of the physical space, to the noncommutative geometry coordinated by the six position and momentum operators. The observable algebra is taken essentially as an algebra of formal functions on the latter operators. The work formulates the intuitive idea that the noncommutative geometry can be seen as an alternative, noncommutative coordinate, picture of familiar quantum phase space, at least so long as the symplectic geometry is concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号