首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

2.
The efficiency of chitosan (a naturally occurring polymer) as a corrosion inhibitor for mild steel in 0.1 M HCl was investigated by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy, and UV–visible analysis. The polymer was found to inhibit corrosion even at a very low concentration. Inhibition efficiency increases with a rise in temperature up to 96 % at 60 °C and then drops to 93 % at 70 °C, while it slightly increases with an increase in chitosan concentration. Polarization curves indicate that chitosan functions as a mixed inhibitor, affecting both cathodic and anodic partial reactions. Impedance results indicate that chitosan was adsorbed on the metal/solution interface. Adsorption of chitosan at the mild steel surface is found to be in agreement with Langmuir adsorption isotherm model. Chemical adsorption is the proposed mechanism for corrosion inhibition considering the trend of protection efficiency with temperature. Calculated kinetic and thermodynamic parameters corroborate the proposed mechanism.  相似文献   

3.
Corrosion inhibition by triazole derivatives (n-MMT) on mild steel in 5 % hydrochloric acid (HCl) solutions has been investigated by weight loss and electrochemical methods. The results obtained revealed that these compounds performed excellently as corrosion inhibitors for mild steel in HCl solution. Potentiodynamic polarization studies showed that they suppressed both the anodic and cathodic processes and inhibited the corrosion of mild steel by blocking the active site of the metal. The effect of temperature on the corrosion behavior of mild steel in 5 % HCl with the addition of different concentrations of the inhibitors was studied in the temperature range from 303 to 333 K. The associated activation corrosion and free adsorption energies were determined. The adsorption of these compounds on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of molecular structure on the inhibition efficiency has been investigated by quantum chemical calculations. The electronic properties of inhibitors were calculated and are discussed.  相似文献   

4.
In this study, the inhibitive effect of synthesized 1-(7-methyl-5-morpholin-4-yl-thiazolo[4,5-d]pyrimidin-2-yl)-hydrazine (MMTPH) as a new corrosion inhibitor for mild steel in 0.5 M sulfuric acid medium is investigated employing potentiodynamic polarization, electrochemical impedance spectroscopy and linear polarization resistance techniques. The results show MMTPH reduces anodic dissolution, retards the hydrogen evolution reaction and its adsorption follows Langmuir’s adsorption isotherm. Any increase in temperature will in turn increase corrosion current densities; however, the presence of MMTPH hinders the rate. In solutions with inhibitor concentration of 200 ppm, temperature elevations as great as 30° (25–55 °C) result in a drop of about 45 % in inhibition efficiency (99–55 %). Thermodynamic adsorption parameters show that the MMTPH is absorbed by a spontaneous exothermic process and the adsorption mechanism is physical. Quantum chemical method shows that the MMTPH molecules can be directly adsorbed at the steel surface on the basis of donor–acceptor interactions between π-electrons of pyrimidine, N atoms of hydrazine and vacant d-orbitals of iron atoms.  相似文献   

5.
The inhibition action of Avogadro natural oil on corrosion of mild steel in one molar hydrochloric acid solution was investigated by gravimetric and potentiodynamic polarization techniques. The surface morphology of as-corroded samples was assessed with high resolution scanning transmission electron microscopy equipped with energy dispersive spectroscopy (HR-STEM/EDS). From the results, the presence of Avogadro natural oil in the metal–acidic interface decreased the corrosion rate with all the exposure times. The inhibition efficiency (%IE) increases with the concentration of the inhibitor considered. Results obtained from gravimetric measurements indicate that the natural oil exhibited higher efficiencies of 93.26 % after 384 h of exposure time and 98.26 % recorded in the potentiodynamic polarization method, both at 4.5 g/v inhibitor addition. Equally, results from the linear polarization indicated higher potential value with an increase in the polarization resistance (R p) and lower current density for the inhibited samples than the uninhibited mild steel sample. The inhibitive effect of this oil was explained in view of adsorption on the metal surface. The adsorption process follows the Langmuir adsorption isotherm.  相似文献   

6.
The inhibition effect of aqueous Argemone mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94 % is acknowledged at the extract concentration of 400 mg L?1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at the metal–acid interface. It is also confirmed by SEM micrographs and FTIR studies. Furthermore, the effects of acid concentration (1–5 M), immersion time (120 h) and temperature (30–60 °C) on inhibition potential of AMRE have been investigated by the weight loss method and electrochemical techniques. An adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with the Langmuir isotherm.  相似文献   

7.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

8.
The inhibition effect of new heterocyclic compounds, namely N-(cyanomethyl)benzamide (BENZA) and N-[(1H-tetrazol-5-yl)methyl]benzamide (BENZA-TET), on mild steel corrosion 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration, immersion time and temperature. The BENZA is a better inhibitor than BENZA-TET. Polarization measurements showed that the inhibitor BENZA-TET is a cathodic type, but BENZA acts as a mixed type inhibitor. In addition, the changes in impedance parameters indicated that these compounds adsorbed on the metal surface leading to the formation of a protective film. Adsorption of benzamide derivatives on the mild steel surface was investigated to consider basic information on the interaction between the inhibitors and the metal surface. It was found to obey the Langmuir adsorption isotherm. From the temperature dependence, the activation energy in the presence of (BENZA) was found to be inferior to that in uninhibited medium. In order to explain why BENZA is the most efficient inhibitor, quantum chemical calculations were applied. The relationships between quantum chemical parameters and corrosion inhibition efficiency have been discussed to see if there is any correlation between them.  相似文献   

9.
Inhibition of the corrosion of mild steel in molar hydrochloric acid by two calixarenes, including the effect of inhibitor concentration and temperature, has been investigated by use of weight loss and electrochemical measurements (polarisation and impedance). The results obtained showed that the rate of corrosion decreased substantially in the presence of the compounds, with maximum inhibition of 98.2 % by one of the compounds at a concentration of 10?3 M. The effect of temperature on corrosion behaviour in the presence of different concentrations of the two new calixarenes was studied in the range 45–75 °C. The efficiency of inhibition by the compounds increased with increasing inhibitor concentration and was independent of temperature. Polarisation curves revealed that the calixarenes are mixed-type inhibitors. Adsorption of the inhibitors by the carbon steel surface obeyed the Langmuir adsorption isotherm. Some thermodynamic data for the dissolution and adsorption processes were also determined.  相似文献   

10.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

11.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

12.
The inhibitive action of verbena essential oil (VEO) on the corrosion of mild Steel in 1 M HCl solutions in the temperature range 298 to 328 K was measured by use of the weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy. Results showed that VEO inhibited corrosion of C38 steel in 1 M HCl solution and that inhibition efficiency increased with increasing concentration of inhibitor but decreased proportionally with temperature. Potentiodynamic polarization studies suggested VEO is a mixed-type inhibitor, with the anodic type predominating. Nyquist plots were depressed semicircles with their centre below the real axis. Adsorption of VEO by the C38 steel surface followed the Langmuir adsorption isotherm. Kinetic data for dissolution were investigated.  相似文献   

13.
The inhibition effect of cetyl trimethyl ammonium bromide (CTAB) on the corrosion of mild steel in 1.0 mol L?1 hydrochloric acid (HCl) has been studied at different temperatures (25–60°C) by weight loss and potentiodynamic polarization methods. The results reveal that CTAB behaves as an effective inhibitor in 1.0 mol L?1 HCl, and the inhibition efficiency increases with the inhibitor concentration. Polarization curves show that CTAB is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarizations are in good agreement. The effect of immersion time on corrosion inhibition has also been examined and is discussed. The adsorption of inhibitor on mild steel surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. The inhibition effect is satisfactorily explained by the parameters.  相似文献   

14.
Aminophylline (AMF) was studied as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution using electrochemical measurements associated with UV–Vis spectrophotometry and optical microscopy. Simultaneous thermogravimetry/derivative thermogravimetry and differential scanning calorimetry analysis was performed in order to determine the temperature range in which AMF is an effective inhibitor, without the decomposition risk that could change the inhibition mechanism. Thermal behaviour restricts AMF application as corrosion inhibitor for carbon steel in 1.0 mol L?1 HCl solution at temperatures ≤45 °C where there are no significant modifications of the adsorption mechanism. According to the results of electrochemical measurements, in association with UV–Vis spectrophotometry and optical microscopy techniques, AMF is a mixed-type inhibitor for carbon steel corrosion in 1.0 mol L?1 HCl solution, simultaneously suppressing the anodic and cathodic processes and acting via spontaneous physisorption on the metal surfaces.  相似文献   

15.
2-Mercapto-1-methylimidazole (MMI) has been evaluated as a corrosion inhibitor for cold rolled steel in aerated 2 M H2SO4 by gravimetric method. The effect of MMI on the corrosion rate was determined at various immersions time and concentrations. The effect of the temperature on the corrosion behaviour with addition of different concentrations of MMI was studied in the temperature range 30–60 °C. The MMI acts as an effective corrosion inhibitor for cold rolled in sulphuric acid medium. The inhibition process is attributed to the formation of an adsorbed film of MMI on the metal surface which protects the metal against corrosion. The protection efficiency increased with increase in inhibitor concentration at various immersions time and decreased with increase in temperature. Adsorption of MMI on the cold rolled steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined.  相似文献   

16.
The corrosion inhibition of mild steel in hydrochloric acid solution in the presence of three different molecular weights of polyvinyl alcohol (PVA) designated as PVA-I, PVA-II, and PVA-III corresponding to 14,000, 72,000, and 125,000 g mol?1, respectively, was investigated using electrochemical impedance spectroscopy, linear polarization resistance (LPR), and potentiodynamic polarization techniques at 25°C. It was found that PVA of different molecular weights inhibited the corrosion of mild steel in the acid environment. Inhibition efficiency (η%) increases with increase in concentration of the polymers. LPR measurements clearly show that inhibition efficiency increases with increasing molecular weight in the order PVA-III > PVA-II > PVA-I. Polarization curves indicate that PVA functions as a mixed inhibitor affecting both the anodic metal dissolution and cathodic hydrogen evolution partial reactions of the corrosion process. The experimental data obtained fitted well into Langmuir adsorption isotherm model. Physical adsorption mechanism is proposed from the thermodynamic (free energy of adsorption) parameters obtained.  相似文献   

17.
The inhibiting effect of aqueous extracts of Funtumia elastica (FE) on mild steel corrosion in 1 M HCl solution was investigated using electrochemical and surface characterization techniques. The results revealed that FE effectively inhibited the corrosion reaction. Polarization data reveal that the extract functioned as a mixed-type inhibitor, while impedance results show that the extract organic matter gets adsorbed on the metal/solution interface. Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy results confirmed the formation of a protective layer of extract adsorbed on the mild steel surface. Adsorption of some organic constituents of FE on mild steel was theoretically described by quantum chemical computations and molecular dynamics simulations, in the framework of the density functional theory.  相似文献   

18.
The corrosion inhibition mechanism of cerium hydroxycinnamate compounds has been studied and compared as an effective corrosion inhibitor for steel in an aqueous 0.6?M NaCl solution. Surface analysis results showed that the surface of steel coupons exposed to solutions containing cerium hydroxycinnamate compounds has less signs of corrosion attack due to a formation of the protective film, while the surface of mild steel coupons exposed to 0.6?M chloride solution without inhibitor additions was severely corroded due to pitting. Electrochemical results performed a good inhibition performance and information of the formed protective deposit that hinders the electrochemical corrosion reactions with a dominance of anodic inhibition mechanism. The results also indicated that the addition of cerium hydroxycinnamate compounds to 0.6?M NaCl solution could mitigate electrochemical corrosion reactions, reduce protective and double layer CPE magnitudes, and improve protective and charge transfer resistances. Furthermore, cerium 2-hydroxycinnamate showed better efficient corrosion inhibitor in comparison with cerium 4-hydroxycinnamate for steel in aqueous media containing 0.6?M chloride ion.  相似文献   

19.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   

20.
Herein, 2-ethyl phenyl-2,5-dithiohydrazodicarbonamide (2EPDCA) was synthesised and tested as a corrosion inhibitor for mild steel (MS) and copper (Cu) in 1 M HCl and 3.5% NaCl, respectively. Fourier transform infrared spectroscopy (FT-IR) and (NMR) nuclear magnetic resonance (1H, 13C) were used to identify the chemical structure. Both experimental and computational approaches have been conducted to evaluate inhibitor efficiency on both metal systems. The electrochemical results showed that the 2EPDCA inhibition efficiency for MS systems was 95% at 1 × 10?2 M, while in copper systems it was 97.5% at 1 × 10?2 M. The Langmuir adsorption isotherm was fitted using adsorption surface coverage data, and for inhibitor in both systems, the kind of adsorption was mixed (physisorption and chemisorption). Through scanning electron microscopy (SEM), EDX, and atomic force microscopy (AFM) tests, we have confirmed the presence of the inhibitor molecules on the metal surface in both systems. Quantum chemistry simulations indicate that the superior corrosion inhibition efficacy of 2EPDCA on copper compared to mild steel surfaces is attributable to the former's greater electron donating propensity on copper. The adsorption of 2EPDCA molecules on Fe (110) and Cu (111) surfaces was further verified by molecular dynamic simulations, with the former having a greater adsorption energy. The results indicate that the corrosion inhibitor was effective even in harsh conditions, and it can be thought of as a novel corrosion inhibitor for mild steel and copper that provides good protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号