首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response surface methodology (RSM) was used to study the cumulative effect of the various parameters, namely surfactant (sodium dodecyl sulphate (SDS), anionic) concentration, pH, and surfactant/metal molar ratio and to optimise the process conditions for the maximum removal of copper from aqueous solutions via micellar-enhanced ultrafiltration (MEUF). For obtaining the mutual interaction between the variables and optimising these variables, a central composite design (CCD) by use of response surface methodology was employed. The analysis of variance (ANOVA) of the quadratic model demonstrated that the model was highly significant. The model was statistically tested and verified by experimentation. Values of pH at the range of ca. 7.5 were very successful for the separation. The maximum rejection coefficient of 98.4% was obtained for the following optimal conditions: SDS/Cu2+ molar ratio *r = 7.85, *pH 7.36, *Csurf = 6.82 g/l SDS. A modification of micellar-enhanced ultrafiltration for the removal of copper from aqueous solutions was studied by the implementation of sodium dodecyl sulphate–polyethylene glycol (PEG) aggregates. A full factorial design (FFD) was employed for studying the effect of molar ratio of surfactant/metal, pH and mass ratio of surfactant/polymer at a constant concentration of surfactant equal to 5 g/l. The comparison of the two systems in the region of their common factors showed that the addition of polyethylene glycol caused a slight increase in rejection coefficient of copper but also could function as ‘scavenger’ for surfactant species.  相似文献   

2.
F Gu  F Xu  L Tan  H Wu  Z Chu  Q Wang 《Molecules (Basel, Switzerland)》2012,17(8):8753-8761
Vanillin was extracted from vanilla beans using pretreatment with cellulase to produce enzymatic hydrolysis, and response surface methodology (RSM) was applied to optimize the processing parameters of this extraction. The effects of heating time, enzyme quantity and temperature on enzymatic extraction of vanillin were evaluated. Extraction yield (mg/g) was used as the response value. The results revealed that the increase in heating time and the increase in enzyme quantity (within certain ranges) were associated with an enhancement of extraction yield, and that the optimal conditions for vanillin extraction were: Heating time 6 h, temperature 60 °C and enzyme quantity 33.5 mL. Calculated from the final polynomial functions, the optimal response of vanillin extraction yield was 7.62 mg/g. The predicted results for optimal reaction conditions were in good agreement with experimental values.  相似文献   

3.
Zhou  Yu  Zheng  Guolin  Zhang  Jinfang  Wang  Qiang  Zhou  Man  Yu  Yuanyuan  Wang  Ping 《Cellulose (London, England)》2021,28(12):8129-8138
Cellulose - Near-neutral bleaching of cotton fabrics at low temperature is of great importance for saving energy and ecological friendliness in textile industry. In this work, glycerol triacetate...  相似文献   

4.
5.
Biodiesel, an alternative diesel fuel made from renewable biological resources, has become more and more attractive recently. Combined use of two immobilized lipases with complementary position specificity instead of one lipase is a potential way to significantly reduce cost of lipase-catalyzed biodiesel production. In this study, the process of biodiesel production from lard catalyzed by the combined use of Novozym435 (non-specific) and Lipozyme TLIM (1,3-specific) was optimized by response surface methodology. The optimal reaction conditions were 0.04 of amount of lipase/oil (w/w), 0.49 of proportion of Novozym435/total lipases (w/w), 0.55 of quantity of tert-butanol/oil (v/v), 5.12 of quantity of methanol/oil (mol/mol), and 20 h of reaction time, by which 97.2% of methyl ester (ME) yield was attained, very close to the predicted value (97.6%). This optimal reaction condition could be true of other similar reactions with plant and animal oil resources; their ME yield could be higher than 95%. The lipases regenerated by washing with organic solvent after each reaction cycle could be continuously reused for 20 cycles without any loss of activity, exhibiting very high manipulation stability.  相似文献   

6.
In this study, we have synthesized sorbitan acrylate through response surface methodology, using sorbitan and vinyl acrylate that catalyze immobilized lipase. In order to optimize the enzymatic synthesis of the sorbitan acrylate, we applied response surface techniques to determine the effects of five-level-four-factors and their reciprocal interactions with the biosynthesis of sorbitan acrylate. Our statistical model predicted that the highest conversion yield of sorbitan acrylate would be approx 100%, under the following optimized reaction conditions: a reaction temperature of 40.1 degrees C, a reaction time of 237.4 min, an enzyme concentration of 8%, and a 4.49:1 acyl donor/acceptor molar ratio. Using these optimal conditions in three independent replicates, the conversion yield reached 97.6+/-1.3%.  相似文献   

7.
The vapor phase pyridine synthesis from acetaldehyde, formaldehyde and ammonia over HZSM-5 catalyst was studied. The process parameters like temperature, aldehyde ratio, and Si/Al ratio in HZSM-5 was investigated and the process conditions were optimized using surface response methodology (RSM) based on Box-Behnken design. The influence of process parameters investigated using analysis of variance (ANOVA), to identify the significant parameters. The optimum conditions for high yield of pyridine were identified to be a reaction temperature 400°C, aldehyde ratio 1: 1 and Si/Al ratio 106.7. A maximum of 55% yield of pyridine formed under the optimum experimental conditions. The proposed model equation using RSM has shown good agreement with the experimental data, with a correlation coefficient R 2 = 0.99.  相似文献   

8.
In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led to a high yield synthesis of gold nanorods with an ideal aspect ratio ranging from 1 (spherical particle) to 4.9. In addition, corresponding tunable surface Plasmon absorption band has been extended to 880 nm. The resulted nanorods were characterized by UV–visible spectrometry and transmission electron microscopy.  相似文献   

9.
The capillary electrophoresis (CE) conditions for a competitive immunoassay of glucagon were optimized for highest sensitivity of the immunoassay and resolution of the electrophoretic peaks using a Box–Behnken design. Injection time, voltage ramp time, and separation voltage were varied between three levels and two responses, bound-to-free (B/F) ratio of the immunoassay peaks and resolution between the peaks, were measured. Analysis of variance was applied to fit a predictive model, and a desirability function was used to simultaneously optimize both responses. A 10-s injection, 1.6-min ramp time, and a 22-kV separation voltage were the conditions found when high B/F was given more emphasis than high resolution. To test the model, calibration curves of a glucagon immunoassay were measured at the optimum and least optimum CE conditions. Optimal conditions increased the sensitivity of the immunoassay by 388% compared to the least optimum conditions while maintaining adequate resolution.
Michael G. RoperEmail:
  相似文献   

10.
The main objective of this research is to determine the capability of four surface-active compounds namely poly(ethylene glycol) distearate, N,N-dimethyldodecylamine N–oxide solution, polyoxyethylene (10) tridecyl ether, and polyethylene glycol sorbitan monooleate as demulsifier agents in breaking water-in-crude oil emulsion through the bottle test method. The influence of temperature, concentration, water content, and pH on demulsification efficiency of the studied demulsifiers was investigated via the response surface methodology (RSM) and the central composite design method (CCD) was applied to design the experiments. The optimum values of input variables to obtain the maximum water separation efficiency were determined based on the developed model by analyze of variance (ANOVA). The R-squared values demonstrate that the developed models could appropriately predict the experimental results of all demulsifier agents.  相似文献   

11.
Models capable of predicting the maximum extent of conversion (p) of cardanol-based novolac-type phenolic resin, have been developed using response surface methodology to determine the optimum reaction conditions. Three-dimensional response surface and their contour plot were drawn. The maximum extent of conversion (98.93%) was predicted when the cardanol was condensed with formaldehyde (molar ratio 1:0.652) at 119.84 °C for a time period of 3 h with the catalyst (e.g., citric acid) concentration of 1.988% of total volume of cardanol and formaldehyde. The pH of the reaction mixture was maintained at 3.0. These predicted values for optimum process conditions were in good agreement with experimental data.  相似文献   

12.
The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.  相似文献   

13.
In this article, samples of moso bamboo were pretreated with oxalic acid under various process conditions. Response surface methodology was applied to optimize the pretreatment conditions. A three-variable quadratic polynomial regression model was obtained to predict the cellulose content, lignin removal and hemicellulose solubilization. The reliability of the model was also evaluated by the key elements obtained from analysis of variance of the coefficients. The surface response plot and contour plot of the effects were studied to further examine the interactions of the three factors and determine the optimum levels of each factor. Finally, the optimized conditions for oxalic acid pretreatment were temperature 178.4 °C, 3.68 % oxalic acid and 28.4 min, respectively. The maximum predicted value of cellulose content in the residue fraction was 64.98 %, along with 79.43 % lignin removal and 96.71 % hemicellulose solubilization after the oxalic acid pretreatment.  相似文献   

14.
The optimum conditions for hydrolysing conjugated metabolites of steroid hormones in bovine urine were performed with Helix pomatia juice, beta-glucuronidase from bovine liver and preparations of limpets and abalone entrails using response surface methodology. The experimental design and empirical modelling used allowed us to assess the main effects of factors (time, temperature, pH and enzyme quantity) and to predict the optimum conditions for each enzyme preparation. Confirmatory experiments were applied to check the predicted values and to validate the model. The comparison of the enzyme preparation efficiency for various conjugate steroids and the study of possible by-product synthesis led us to select abalone entrails to hydrolyse natural dehydroepiandrosterone, etiocholanolone, epitestosterone; 17 alpha-estradiol and estrone in bovine urine. The optimum conditions were found to be 20 h at 42 degrees C with the pH adjusted to 5.2 and using 12,000 units of enzyme preparation.  相似文献   

15.
This study investigates the treatment of cutting oil wastewater from the automotive parts manufacturing industry to promote sustainability via the use of ‘used shot blasts’, which are the by-products of auto parts production. Used shot blasts are rich iron sources of Fe0, which becomes an effective catalyst in the Fenton reaction. A modified air-Fenton (MAF) system was proposed to generate hydroxyl radicals that eliminated recalcitrant organics in cutting oil wastewater. First, the Taguchi method, comprising the L18 orthogonal array design, was used to identify significant operation factors, including the size and amount of used shot blasts, initial pH, reaction time, mixing speed, initial cutting oil concentration, and air flow rate. Then, a central composite rotatable design coupled with response surface methodology (RSM) was used to determine the optimal conditions and model the influencing variables. The results provided three crucial variables for the cutting oil wastewater treatment through use of the MAF system: initial pH, the amount of used shot blasts, and initial cutting oil concentration. RSM was applied to reveal the optimum operating conditions, achieving a maximum removal efficiency of 92.82% for chemical oxygen demand (COD), 80.18% for total organic carbon (TOC), and 99.55% for turbidity within 45 min of operating the MAF system. The model agreed well with the experimental data, with coefficient of determination values of 0.9819, 0.9654, and 0.9715 for COD, TOC, and turbidity removal efficiency, respectively. Pseudo-second-order reaction kinetics fitted well for COD removal, with a rate constant of 0.0218 min?1 and hydrogen peroxide generation of 0.0169 M. Overall, the proposed MAF system was efficient and had a low operating cost (0.67 USD/m3).  相似文献   

16.
Adsorption of fluoride ion was done from its aqueous solution by using maghemite (γ-Fe2O3) nanoparticles. Effects of the major independent variables (temperature, adsorbent dose and pH) and their interactions during fluoride ion adsorption were determined by response surface methodology (RSM) based on three-level three-factorial Box–Behnken design (BBD). Optimized values of temperature, maghemite nanoparticle dose and pH for fluoride sorption were found as 313 K, 0.5 g/L, and 4, respectively. In order to investigate the mechanism of fluoride removal, various adsorption isotherms such as Langmuir, Freundlich, Temkin and Florry–Huggins were fitted. The experimental data revealed that the Langmuir isotherm gave a more satisfactory fit for fluoride removal. The adsorption process was rapid and obeyed pseudo-second-order kinetics. The values of thermodynamic parameters ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature.  相似文献   

17.
Total halogen-free bleaching of kraft pulps was conducted by an oxidative photochemical process at room temperature using alkaline hydrogen peroxide. Selection of an appropriate wavelength of light was crucial for effective bleaching and avoiding degradation of cellulose. The wavelength of the light has to be selected so that the light is absorbed only by the colored compounds in the pulps and not by the bleaching reagents or the pulp itself. When a long-wavelength black-light fluorescent lamp was used in combination with aqueous hydrogen peroxide solution at pH 11, the bleaching efficiency for hardwood and softwood kraft pulps reached the same level as that obtained by conventional two-stage elemental chlorine-free processes.  相似文献   

18.
Advanced oxidation of wastewater is a promising technique for tannery wastewater treatment, as it consumes less chemical addition and energy and it doesn’t liberate any secondary effluents. However, advanced oxidation can be improved by conjoining it with energy sources like ultraviolet radiation, ultrasound, etc. Catalysts capable of oxidation like titanium dioxide and iron oxide have been utilized for advanced oxidation of tannery effluent. The present work studies the synergic effect of ultrasound assisted advanced oxidation using two oxy-catalysts, namely zinc oxide and silicon dioxide. The effect of variables like time of treatment, catalyst loading, and power of ultrasound on the reduction of BOD, COD, and TDS were estimated and the results indicated a proficient reduction of contaminants. Upon treatment with silicon dioxide under ultrasound, the COD, BOD, and TDS reduction were found to be 88%, 89%, and 88% respectively, while zinc oxide catalyst indicated 89%, 85%, and 88% reduction. Response Surface Methodology has been utilized for derivation of a mathematical model for COD, BOD and TDS reduction. The spent catalysts were analyzed using Scanning Electron Microscopy and X-ray Diffraction to understand the changes in the characteristics of the spent catalyst. The deposition of contaminants on the catalysts and slight changes in the surface morphology were evident. Hence silicon dioxide and zinc oxide are promising catalysts for the treatment of tannery effluent combined with ultrasound.  相似文献   

19.
Tensile properties are among the significant properties of isotactic polypropylene (iPP). The mechanical properties including the tensile properties are fairly dependent on the overall crystallinity and crystallite size and their distribution in molded product, type of crystal structure and testing conditions. In presence of α-nucleating agents, the crystallization rate and onset temperature of isotactic PP increase. In this paper, the role of externally added commercial α-nucleating agent HPN-20E (Milliken Inc.) on tensile properties was investigated with respect to tensile properties of pure iPP. The experimental part includes the use of design of experiment (DoE) - response surface methodology (RSM) with central composite design (CCD) having three factors namely mold temperature, melt temperature and injection rate. Two levels of each factor with six centre points and five numbers of replicates were selected. The nucleating agent, HPN-20E, was added 1.0% by wt. in iPP (mfr 11.0 g/10min) using a lab scale co-rotating twin screw extruder. The compounded pellets were dried at 85 °C in a circulating hot air oven for 24 h. The tensile samples (ASTM-638D, type-I) were molded on a micro-injection molding machine (make BabyPlast, Italy). The samples were tested for tensile properties on a universal testing machine (make Lloyds, USA). The measured responses were tensile strength (MPa), Young's modulus (MPa) and work to break (N.mm). The same experimental procedure was also followed for pure iPP and same responses were measured to set the baseline of experiment. The analysis of variance (ANOVA) tests unearth that mold and melt temperatures are highly interacting in nature. That is why previous attempts based on traditional way of varying one parameter at a time were not so successful to relate tensile properties with injection molding variables. The RSM tests resulted into useful quantitative relationship between the tensile properties and injection molding process variables.  相似文献   

20.
This study investigated the individual and interactive effects of three factors — temperature, inoculum/substrate ratio (ISR) and inoculum typology — on the anaerobic digestion of corn ethanol distillery wastewater. Biochemical methane potential assays planned with factorial design with two independent quantitative variables on three levels (ISR: 1:1, 2:1 and 3:1; temperature: 30°C, 33.5°C, 37°C) and one independent qualitative variable (inoculum type: suspended, granular, mixed) have been performed. Response Surface Methodology has been used to study the effect of the factors with the aim of maximizing the specific methane yields (YCH4) obtainable with this substrate. The results show that all three investigated factors influence in a significant matter the YCH4, the ISR having the strongest effect on it. The temperature has significant influence on the YCH4 only in combination with high ISR values. The optimal conditions for the maximum YCH4 (551 mL CH4 g?1 VSadded) have been found at 37°C operating temperature, ISR=3:1 and using granular inoculum. These conditions gave rise to a 4-fold increase of YCH4 with respect to the worst combination of factors (YCH4=129 mL g?1 VSadded for the suspended inoculum type, at 30°C and ISR=1:1). The results improve the knowledge on the digestion of this substrate, providing information for successful process up-scaling.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号