共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the findings concerning the preparation and properties of cotton woven fabrics with a conductive network made of multiwall carbon nanotubes deposited on the fiber surface by the padding method. The next stage of treatment consisted of imparting superhydrophobic properties to the fabrics in solution with methyltrichlorosilane (MTCS) in a waterless medium. The tests performed show that the state of surface and water content in cotton fibers exerts a significant influence on the hydrophobic properties of the analyzed samples. In order to explain the differences in hydrophobic properties, the morphology of the cotton fabric surface was examined using samples with various water contents. The formation mechanism of MTCS coatings on cotton fabric has been proposed. 相似文献
2.
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010 相似文献
3.
A film of oriented nitrogen-doped multiwall carbon nanotubes was grown on a silicon substrate as a result of the thermolysis of an acetonitrile + ferrocene mixture. The fluorination of the film by BrF 3 vapor at room temperature removed the substrate; however, the vertical orientation of the nanotubes was not destroyed. Analysis of micrographs of a fluorinated sample obtained with a high-resolution transmission electron micro-scope showed that only the surface walls of the nanotubes were fluorinated. The fluorine concentration of the product as determined from X-ray photoelectron spectroscopy was about 16%. A comparison of the N1 s spectra of the starting and fluorinated samples showed that the nitrogen atoms of CN x nanotubes changed their electronic state as a result of fluorination. Matching of the X-ray photoelectron spectroscopic data with the results of quantum-chemical calculations for fragments of fluorinated nitrogen-doped nanotubes showed that fluorine atoms preferred to attach to pyridine-like nitrogen atoms or to carbon atoms in the ortho or meta positions relative to a nitrogen atom. 相似文献
4.
Electrochemical behavior of metol, which coexists with p-benzeneiol (HQ) at a glassy-carbon electrode modified with multiwall carbon nanotubes (MWNT/GCE), is studied in the thesis.
The results indicate that metol yields a well-defined peak of which two concomitant reductive peaks separate and the potential
separation reaches to 178 mV, and that concomitant HQ has almost no interference with the reduction signal of metol. The values
of the reductive peak current ( I
pc) are found to be linearly related to metol concentration over the range of 8.0 × 10 −2 −1.0 × 10 −5 M, with a detection limit of 5.0 × 10 −6 M. Some common matter has no interference with the determination of metol.
Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 1, pp. 31–35.
The text was submitted by the authors in English. 相似文献
5.
The polymer decoration technique has been widely used to study the chain folding behavior of polymer single crystals. In this article, we demonstrate that this method can be successfully adopted to pattern a variety of polymers on carbon nanotubes (CNTs). The resulting structure is a two-dimensional nanohybrid shish kebab (2D NHSK), wherein the CNT forms the shish and the polymer crystals form the kebabs. 2D NHSKs consisting of CNTs and polymers such as polyethylene, nylon 66, polyvinylidene fluoride and poly(L-lysine) have been achieved. Transmission electron microscopy and atomic force microscopy were used to study the nanoscale morphology of these hybrid materials. Relatively periodic decoration of polymers on both single-walled and multi-walled CNTs was observed. It is envisaged that this unique method offers a facile means to achieve patterned CNTs for nanodevice applications. 相似文献
6.
A facile method for the functionalization of multiwall carbon nanotubes (MWCNT) by photopolymerization of 5-mercapto-2,2'-bithiophene modified metal (Au or Ag) nanoparticles on the surface of the MWCNT is developed. 相似文献
7.
The composite of polyaniline (PANI) and multiwall carbon nanotube carboxylated through acid treatment (c‐MWCNT) was synthesized by chemical oxidative polymerization in an inverse emulsion system. The resultant composites were compared with products from aqueous emulsion polymerization to observe the improvements in electrical conductivity, structural properties, and thermal stability obtained by this synthetic method. Prior to the inverse emulsion polymerization, MWCNT was treated with a strong acid mixture to be functionalized with carboxylic acid groups. Carboxylic acid groups on surfaces induced selective dispersibility between polar and nonpolar solvents because of the increase of hydrophilicity. As the content of c‐MWCNT was increased, the electrical conductivity was increased by a charge transport function from the intrinsic electrical conductivity of MWCNT and the formation of a highly ordered dense structure of PANI molecules on the surface of c‐MWCNT. The images observed with electron spectroscopy showed the capping of c‐MWCNT with PANI. The growth of additional ordered structures of PANI/c‐MWCNT composite, which was observed through wide‐angle X‐ray diffraction patterns, supported the capping by PANI. It was observed that the doping of the composite had a significant relationship with the concentration of dodecylbenzenesulfonic acid (DBSA). The thermal stability of PANI composite was improved by the addition of c‐MWCNT; this was thought to be related with structure ordering by inverse emulsion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2255–2266, 2008 相似文献
8.
Silver nanoparticle coated multi-walled carbon nanotubes (Ag/MWCNT) were prepared and used to fabricate a modified electrode. The Ag/MWCNT composites were observed by a transmission electron microscope (TEM), and the electrochemical properties of the Ag/MWCNT composite modified glassy carbon electrode were characterized by electrochemical measurements. The results showed that these composites had a favorable catalytic ability for the reduction of trichloroacetic acid (TCAA). Square wave voltammetric (SWV) technique was applied to detect TCAA. Under optimum conditions, the voltammetric determination of TCAA was performed with a linear range of 5.0 × 10 ? 6–1.2 × 10 ? 4 mol L ? 1 and a detection limit of 1.9 × 10 ? 6 mol L ? 1 (S/N = 3). 相似文献
9.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes. 相似文献
10.
Conducting polymer (polyaniline) sheets are shown to be active substrates to promote the growth of nanostructured silver thin films with highly tunable morphologies. Using the spontaneous electroless deposition of silver, we show that a range of nanostructured metallic features can be controllably and reproducibly formed over large surface areas. The structural morphology of the resulting metal-polymer nanocomposite is demonstrated to be sensitive to experimental parameters such as ion concentration, temperature, and polymer processing and can range from densely packed oblate nanosheets to bulk crystalline metals. The deposition mechanisms are explained using a diffusion-limited aggregation (DLA) model to describe the semi-fractal-like growth of the metal nanostructures. We find these composite films to exhibit strong surface-enhanced Raman (SERS) activity, and the nanostructured features are optimized with respect to SERS activity using a self-assembled monolayer of mercapto-benzoic acid as a model Raman reporter. SERS enhancements are estimated to be on the order of 10(7). Through micro-Raman SERS mapping, these materials are shown to exhibit uniform SERS responses over macroscopic areas. These metal-polymer nanocomposites benefit from the underlying polymer's processability to yield SERS-active materials of almost limitless shape and size and show significant promise for future SERS-based sensing and detection schemes. 相似文献
11.
Linear polystyrene chains were grown from the convex surface of two commercially available multiwall carbon nanotubes (MWCNTs) with similar diameter but different lengths. The MWCNTs were supplied from Bayer Material Science® (purity >95%, external diameter = 13–16 nm, length = 1–10 μm, denoted MWCNT BMS95) and FutureCarbon GmbH (purity >99%, external diameter = 15 nm, length = 5–50 μm, denoted MWCNT FC99). The MWCNTs were oxidized with nitric acid, consecutively reacted with thionyl chloride, glycol or poly(ethylene glycol), 2‐bromo‐2‐methylpropionyl bromide and finally with styrene under atom transfer radical polymerization (ATRP) conditions. The content of polystyrene grafted from the surface of the MWCNTs can be controlled by adjusting the molecular weight of the poly(ethylene glycol), the initiator concentration and the monomer to carbon nanotube weight ratio. Under comparable experimental conditions, a higher amount of polystyrene is grafted from the MWCNT BMS95 than from MWCNT FC99. The difference in dimensions and the state of aggregation of the carbon nanotubes influence the grafting from polymerization reactions, where relative shorter and tightly aggregated carbon nanotubes promote higher polymerizations yields than longer and less aggregated carbon nanotubes. The increase of the viscosity of the carbon nanotube dispersion decreases the polymer grafting content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1035–1046, 2010 相似文献
12.
The report described a method of more stably dispersing oxidized carbon nanotubes (CNTs) by forming complex with polycation and the layer-by-layer self-assembly behavior of the complex with polyanion was studied. The properties of the self-assembled multilayer film containing carbon nanotubes were studied. Cyclic voltammetry, UV-vis-NIR spectroscopy, electrochemical impedance spectroscopy and scanning electron microscopy were used for characterization of film assembly. UV-vis-NIR spectroscopy and cyclic voltammetry study indicated the uniform growth of the film. Electrochemical impedance spectroscopy results showed that incorporating of carbon nanotubes in the polyelectrolyte multilayers decreased in the electron-transfer resistance Rct, indicating more favorable electrochemical reaction interface. The electrocatalytic property of the multilayer modified electrode to NADH was investigated mainly with different numbers of the bilayers and the results showed that along with the increase of the assembled bilayers the overpotential of NADH oxidation decreased. The detection limit could reach 6 μM at a detection potential of 0.4 V. 相似文献
13.
Nanofluid and coiled tubes have been employed as two passive methods for enhancing the heat transfer. In the present study, the turbulent flow of CuO–water nanofluid in helical and conical coiled tubes was numerically investigated with constant wall temperature through mixture model. The thermophysical properties of base fluid (water) were considered as temperature-dependent functions, while Brownian effects were adopted in thermal conductivity and dynamic viscosity of nanofluid. Simulation results were validated using experimental data for heat transfer coefficient and pressure drop in helical coiled tube for different Reynolds numbers. Four different geometries were simulated and compared. The first one was a conical coiled tube; the others were helical coiled tubes whose coil diameters were minimum, maximum, and median of the conical coiled tube pitch coil diameter. The velocity profiles indicated stronger secondary flow in conical coiled tube at a specified Dean number. The obtained results also showed higher heat transfer enhancement in the conical coiled tube in comparison with helical coiled tube with the same average pitch coil diameter. Moreover, the nanoparticle-induced heat transfer enhancement was more effective in conical coiled tube. 相似文献
14.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003 相似文献
15.
An electrochemical procedure for the removal of fluorine from the walls of fluorinated monolayer carbon nanotubes was suggested. According to element analysis data, fluorine was completely removed. According to UV-Vis-Nir and Raman spectroscopic studies, the initial structure of fluorinated carbon nanotubes was almost completely restored. 相似文献
16.
Polypyrrole (PPy) nanotubes with highly uniform surface and tunable wall thickness were fabricated by one-step vapor deposition polymerization (VDP) using anodic aluminium oxide (AAO) template membranes, and transformed into carbon nanotubes through a carbonization process. 相似文献
17.
Nanosemiconductor CuSe were prepared on self-made multiwalled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane electrode by electrochemical atomic layer deposition (EC-ALD). By exploring the elements, electrochemical properties through cyclic voltammetry and differential pulse-stripping voltammetry, -0.2 and -0.55 V are finally identified as the deposition potential of copper and selenium, respectively. Current density ? time curve obtained via amperometric I– t processes indicates the formation of copper layer by a two-dimensional nucleation and growth mechanism, while selenium growth is considered to be diffusion control process. X-ray powder diffraction data reveals the preferred orientation of the CuSe crystal is at (112) plane. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis show that the obtained CuSe thin film are short virgate nanostructure, and the average atomic percentage of Cu:Se is close to one. Furthermore, the ultraviolet visible (UV–Vis) transmission measurements provide a band gap of 2.0 eV. Open-circuit potential (OCP) and amperometric I– t experiments illustrate the CuSe thin film to be p-type semiconductor. Obtained results indicate that the CuSe thin film depositing on COOH-CNTs/PI membrane is appropriate to serve as the solar energy transfer material. 相似文献
19.
We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface. 相似文献
20.
Electrochemical polymerization in Langmuir-Blodgett multilayers of amphiphilic pyrrole derivatives resulted in anisotropic conducting thin films having alternate conducting and insulating layered structure. 相似文献
|