首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
富含过渡元素的菱铁矿是用于制备选择性催化还原(SCR)脱硝催化剂的理想材料。在本研究中,对菱铁矿掺杂了Mn和Ce,并研究了Mn-Ce共掺杂改性菱铁矿在NH3-SCR反应中去除NOx的活性。结果表明,经过450℃煅烧后菱铁矿的主要成分FeCO3能够转化为Fe2O3。菱铁矿掺杂Mn和Ce后能够提高比表面积和表面酸度,降低硫酸铵盐在催化剂表面上的热稳定性。因此,Mn-Ce共掺杂改性菱铁矿催化剂表现出较高的SCR脱硝活性和抗硫性。3% Mn1% Ce-菱铁矿催化剂在脱硝效率高于90%的温度窗口能够拓宽至180-300℃,同时在引入SO2 7.5 h后该催化剂的脱硝效率仍高于75%。  相似文献   

2.
采用浸渍法制备了系列铜锰复合氧化物分子筛催化剂(Cu-Mn/SAPO-34),在固定床反应器上考察不同Cu/Mn质量比对分子筛催化剂选择催化还原NO的影响,利用XRD、NH_3-TPD、H_2-TPR、XPS等手段对催化剂进行了表征分析。结果表明,双金属改性的Cu-Mn/SAPO-34催化剂在NH_3-SCR反应中表现出较为优异的催化活性,具有较宽的活性温度窗口。当Cu/Mn质量比为1∶4时,催化剂具有最宽的活性温度窗口,NO_x转化率在250℃已达到85.39%,在300-400℃转化率均达到96%以上,450℃时仍能达到90%。铜和锰物种高度分散于催化剂表面,未改变SAPO-34的晶体结构,且构成协同作用。Cu-Mn共同负载促进了Cu~(2+)向Cu~+的转变,增加了高价态Mn~(4+)和Mn~(3+)的比例,有利于提高低温活性,促进催化反应的进行。Cu-Mn/SAPO-34/1∶4具备丰富的酸性位、良好的氧化还原性能和抗SO_2/H_2O性能,该配比有助于催化剂的催化活性和稳定性的提高。  相似文献   

3.
钒钛基选择性催化还原催化剂是目前燃煤电厂应用最为广泛的脱硝催化剂.由于传统钒钛基催化剂存在低温脱硝效率低、热稳定性差、单质汞氧化效率低、二氧化硫氧化、氨逃逸、碱金属中毒等问题,人们开始尝试通过对传统SCR催化剂进行改性,以期改善其综合性能.本文从(1)拓宽催化剂的反应温度窗口,尤其是向低温区扩展,(2)提高催化剂的热稳定性,(3)协同氧化单质汞,(4)控制氨逃逸,(5)降低SO_2至SO_3的转化率和(6)提高催化剂抗碱金属中毒性能等方面综述了改性钒钛基SCR催化剂的研究进展,总结了其催化性能和相关影响机理.研究表明,某些金属及非金属的改性可以增加钒钛基SCR催化剂的表面酸度、活性位点及氧化还原性能,非金属的掺杂还可以抑制TiO_2载体由锐钛矿向金红石型转化、增加表面氧空位,从而改善了钒钛基催化剂的低温脱硝性能;硅、钨、钡和稀土金属等的添加也可抑制TiO_2的金红石化过程,锆、钾则改变了钒氧化物的存在形态,抑制其高温聚合,提高了钒钛基催化剂的热稳定性;贵金属、过渡金属、金属氯化物及非金属的改性改变了钒钛基催化剂的汞氧化机制,均可有效促进低氯甚至无氯条件下钒钛基催化剂对单质汞的氧化;贵金属钌及助剂钼添加的钒钛基催化剂可在维持较高脱硝效率的同时,实现单质汞及逃逸氨的高效去除,在SCR尾部将逃逸氨选择性氧化生成无害的氮气和水;被铜、氧化钡、氧化硅等物质改性后,更多的钒以低价态存在,使催化剂的氧化还原性能降低,并抑制了二氧化硫的吸附,从而减少了三氧化硫的生成;由于具有高储氧能力和氧化还原特性,还可降低碱金属的吸附量,铈的掺杂可提高钒钛基催化剂的抗碱金属中毒性能.此外,本文还汇总了包括贵金属(如银、钌)、过渡金属(如锰、铁、铜、锆等)、稀土金属(铈、镨)等金属、金属氯化物(如氯化铜、氯化钙)及非金属(氟、硫、硅等)改性钒钛基SCR催化剂的优缺点.基于前人研究及作者观点,改性组分的掺杂有利于进一步提高钒钛基催化剂的综合性能,具有巨大的发展潜力,也是在现有基础上实现多污染物控制的方法之一.  相似文献   

4.
通过溶胶-凝胶法将TiO2溶胶负载在堇青石载体上, 再浸渍Mn和Ce活性组分, 得到整体式催化剂, 并用于NH3选择性催化还原(SCR)NOx. 结果表明, 添加Ce以后, 催化剂的低温脱硝活性得到明显提高, 在空速6000 h-1时, 120 ℃下NO转化率由71.1%提高到97.8%, 并且在120~240 ℃范围内, NO的转化率均保持在95%以上. Ce改性后催化剂具有较大的比表面积和孔体积; 催化剂表面含有更高含量的Mn4+和较多的表面化学吸附氧, 增加了NH3的吸附能力, 并进一步促进了NO氧化活性, 使SCR活性显著提高.  相似文献   

5.
铁铈复合氧化物催化剂SCR脱硝的改性研究   总被引:1,自引:0,他引:1  
利用共沉淀法制备了铁铈催化剂,考察添加钛、锆、钨和钼对其SCR脱硝的改性规律。结果表明,钨和钼的添加提高了铁铈催化剂高温脱硝性能,却使其低温活性有所降低;钛的添加对铁铈催化剂脱硝性能具有促进作用,尤其提高了其低温活性,并拓宽了其完全转化温度窗口,为最佳改性物。当钛的物质的量比逐渐由0.10增至0.40,铁铈钛催化剂低温脱硝效率先增大后减小,但其高温脱硝效率逐渐增大至100%,钛的最佳物质的量比为0.15。XRD和N2吸附分析结果表明,钛能优化铁铈催化剂的孔隙结构,增大其比表面积和比孔容,细化其孔径,并与催化剂中铁、铈氧化物形成良好的固溶体,从而提高了铁铈催化剂的SCR脱硝性能。Fe0.8Ce0.05Ti0.15Oz催化剂在150~400℃取得了高于90%的NOx转化率。  相似文献   

6.
采用等体积浸渍法制备多壁碳纳米管(MWCNTs)负载Ce-Mn的催化剂,考察了Ce掺杂对Mn/MWCNTs催化剂上NH3选择性催化还原(SCR)NOx反应活性的影响.并运用透射电镜扫描、N2吸附-脱附、程序升温还原、X射线光电子能谱、X射线衍射等手段,重点考察了Ce掺杂对Mn/MWCNTs催化剂结构性质的影响.结果表明,Ce掺杂能显著提高催化剂的SCR活性,其活性增量随着Ce含量的增加先增大后减小;当Ce/Mn为0.6时,催化剂活性最佳.表征结果显示,Mn/MWCNTs中添加Ce后,金属氧化物在MWCNTs上的分散程度提高;催化剂的比表面积和孔体积增大,平均孔径减小;氧化能力提高;表面氧含量增加,Mn化合价升高;结晶度降低,Mn主要以无定形或微晶形式存在,Ce主要以CeO2物相存在.  相似文献   

7.
采用混合搅拌法制备了Ce、Zr掺杂改性的菱铁矿SCR脱硝催化剂,研究了Ce、Zr共同掺杂对催化剂催化脱硝性能及抗硫性的影响。结果表明,3%Ce+3%Zr掺杂菱铁矿催化剂(Ce_(0.03)/Zr_(0.03)-菱铁矿)具有优异的催化脱硝活性,在180-330℃,催化脱硝效率均在92%以上,该催化剂同时具有良好的抗SO_2性能,在210℃下通入体积分数为0.01%的SO_2,8 h后仍有95%以上的催化脱硝效率。通过XRF、BET、XRD、NH_3-TPD、TG等实验手段对催化剂成分、微观孔结构、晶相等进行表征。表征结果显示,Ce、Zr的掺杂能明显提高催化剂的比表面积以及表面结晶分散度,增强催化剂的表面酸性,促进硫酸铵盐在催化剂表面的分解。因此,催化剂具有优异的中低温催化脱硝活性及抗硫性。  相似文献   

8.
利用共沉淀法制备了铁铈复合氧化物催化剂,在积分实验系统上考察了NO初始浓度、NH3/NO比及O2浓度对其SCR脱硝活性的影响;并借助微分系统探讨了其SCR脱硝的催化反应动力学,构建了铁铈复合氧化物催化剂的催化脱硝反应动力学模型.实验结果表明,NO初始浓度越高,每克催化剂的NO转化率越高;随着NH3/NO比的增加,NO转化率先迅速增加后趋势减缓,最终趋于稳定;O2在NH3-SCR反应中起着重要的作用;在175~225 ℃下,Fe0.95Ce0.05Oz催化剂的NO和NH3反应级数分别为1级和0级,O2的反应级数接近0.5级,该反应的表观活化能为42.6 kJ/mol.  相似文献   

9.
李鹏  李智芳  耿翠  康燕  张超  杨长龙 《无机化学学报》2018,34(12):2205-2210
采用浸渍法制备了不同负载量Mo掺杂Ce/GE催化剂,对其脱硝性能进行了测试,初步探明了Mo掺杂Ce/GE催化剂促进SCR活性增强的内在机制。结果表明,Mo的添加使nCe3+/(nCe3++nCe4+)比率增加、表面吸附氧(Oβ)含量增加及催化剂酸性位点增加,从而提高催化剂的脱硝活性。与5Ce/GE和5Mo/GE相比,5Ce-5Mo/GE催化剂脱硝性能更加优异。当Mo负载量为5%时,催化剂脱硝活性最好,在250℃时NOx转化率达到了99%。此外,5Ce-5Mo/GE催化剂具有较好的抗硫性能。  相似文献   

10.
近年来柴油车尾气排放了大量的氮氧化物(NO_x),其治理技术目前主要基于选择性催化还原(SCR).但是,由于柴油车尾气的温度波动范围较宽,氧气浓度高,汽油车三效催化剂不能用于柴油车尾气脱硝,因此开发一种有效的SCR催化剂去除柴油机尾气中的NO_x至关重要.Cu/分子筛催化剂在尾气温度高于200°C时表现出高的脱硝活性,但低温(200°C)催化活性仍有待提高.此外,当柴油颗粒过滤器再生时催化剂处于高温高湿环境,而且柴油车尾气中有未完全燃烧的碳氢化合物(HCs)存在.因此,水热稳定性和抗HCs失活性也是催化剂性能的一个重要指标.Cu–Mn共负载可以有效提高催化剂在200°C以下对NO_x的脱除性能,但其稳定性尚未讨论.本文采用离子交换法将Cu–Mn双金属体系负载在ZSM-5和SAPO-34上,考察了Cu–Mn双金属催化剂去除柴油车尾气NO_x的效果,以及催化剂的温度敏感性、水热稳定性和抗HCs性能.通过X射线衍射(XRD)、扫描电镜(SEM)、N_2吸脱附、~(27)Al固体核磁共振(~(27)Al NMR)和X射线光电子能谱(XPS)等手段分析了催化剂活性和稳定性差异的原因,探讨了影响稳定性的关键因素.研究发现,当Cu/Mn比为3:2时,200°C时Cu–Mn/ZSM-5和Cu–Mn/SAPO-34的NO_x转化率分别达到65%和90%.当催化剂水热老化处理后,或在反应气体中通入C_3H_6后,Cu–Mn/SAPO-34对NO_x的去除率比Cu–Mn/ZSM-5稳定.SEM和物理结构分析结果表明,水热老化处理和含C_3H_6气氛的SCR反应后,Cu–Mn/ZSM-5发生了明显的团聚,且BET比表面积和孔容减小;而Cu–Mn/SAPO-34未发生团聚现象,且保持较好的物理结构.因此,Cu–Mn/ZSM-5的团聚以及物理结构的破坏可能是其稳定性低的原因之一.XRD结果表明,水热老化处理后Cu–Mn/ZSM-5晶体结构无明显变化,Cu–Mn/SAPO-34的结晶度有所提高.含C_3H_6气氛的SCR反应后,两种催化剂仍然保持分子筛结构的特征峰,表现出较好的晶型结构,C_3H_6不会对催化剂的结晶度和晶体结构产生破坏作用.结合SEM图像发现水热老化处理提高了Cu–Mn/SAPO-34的结晶度并提高其低温活性.27Al NMR结果表明,两种催化剂在水热老化处理和含C_3H_6气氛的SCR反应后,四面体配位Al的峰面积几乎没有明显的改变,表明反应后催化剂并未发生明显的脱铝现象,仍然保持较好的结构稳定性.这与之前研究中Cu/ZSM-5反应后四面体配位的Al原子明显减少的结果不同.因此,Mn的加入可以缓解催化剂的脱铝,提高稳定性.XPS结果表明,水热老化处理和含C_3H_6气氛的SCR反应均使得Cu–Mn/ZSM-5上八面体配位的Cu~(2+)明显降低,Cu~+和八面体配位的Cu~(2+)之间的氧化还原循环受到明显抑制.而在Cu–Mn/SAPO-34表面,Cu原子浓度高度稳定,SCR反应中Cu~+和Cu~(2+)保持良好的氧化还原循环.因此,稳定的物理结构和Cu物种是催化剂稳定性的两个重要因素.  相似文献   

11.
本研究分别选用络合剂氨基三甲叉膦酸(ATMP)、2-膦酸基丁烷-1,2,4-三羧酸(PBTCA)对钙中毒商用SCR脱硝催化剂(V2O5-WO3/TiO2)开展了再生方法研究,借助BET、NH3-TPD、H2-TPR和XPS等分析测试方法和实验探究考察了再生前后催化剂的理化特性及再生脱硝性能。结果表明,ATMP与PBTCA具有高效的再生性能,再生催化剂的脱硝效率在400℃下分别从25.8%恢复至89.8%与88.1%。与稀H2SO4再生相比,ATMP与PBTCA对催化剂的再生具有更高的除钙率与更低的钒损失率(不足5%)。使用ATMP与PBTCA对催化剂再生可有效恢复催化剂表面的Br?nsted酸性位;催化剂表面的活性钒物种V5+和表面化学吸附氧Oα明显增加,催化剂整体活性达到最优水平。因此,将络合剂ATMP与PBTCA用于失活SCR脱硝催化剂的再生具有广阔的应用前景。  相似文献   

12.
作为引起酸雨、光化学烟雾、雾霾等大气污染问题的主要根源,氮氧化物(NO_x)的防治已成为亟待解决的问题。选择性催化还原技术作为最成熟有效的脱硝技术,目前已经被广泛应用于各燃煤电厂.低温脱硝催化剂具有优秀的低温活性,使得脱硝装置可以安放在脱硫装置和除尘装置下游,受到了学者广泛的研究.目前低温脱硝催化剂的研究主要是对催化剂进行改性以提高催化剂的性能,已有许多研究报道了Sn、Ni、Co、Zr、Cr、Ni等对催化剂的改性影响.Ho作为一种改性元素被应用于光催化领域,能提高TiO_2的光催化能力.但Ho应用于脱硝领域的研究鲜有报道,其氧化物具有酸性位点有助于脱硝反应,因此研究Ho对低温SCR催化剂的改性作用具有重要意义.本文采用浸渍法制备Ho掺杂的Mn-Ce/TiO_2催化剂,研究了Ho的掺杂对于Mn-Ce/TiO_2催化剂低温脱硝性能的影响,同时还研究了烟气中的SO_2和H_2O对催化剂活性的影响,并利用XPS、XRD、H_2-TPR、NH_3-TPD等表征方法从物理性质和化学性质两方面对Ho改性的影响机理进行了研究.研究发现,Ho的掺杂能提高Mn-Ce/TiO_2催化剂的脱硝能力,有助于催化剂N_2选择性的提高.分析表明,Ho的掺杂有助于催化剂比表面积的提升,且能提高催化剂的酸性,有利于催化剂对NH_3的吸附,从而提高催化剂的性能.XPS表征结果表明Ho掺杂后的催化剂具有更高的化学吸附氧浓度和较高的Mn~(4+)/Mn~(3+)比例,使得脱硝反应更容易进行.改性后催化剂的抗水抗硫实验结果表明,Ho的掺杂能够提高催化剂的抗水抗硫性能.XRD结果表明,抗水抗硫实验后催化剂表面形成了硫酸铵盐,硫酸铵盐的形成会堵塞催化剂表面的活性位,限制脱硝反应的进行,从而影响催化剂的脱硝活性.同时,400℃下进行再生实验后的催化剂活性有所恢复,但是未能达到抗水抗硫实验前的活性,表明在抗水抗硫实验中催化剂表面形成了除硫酸铵盐以外的其他硫酸盐类.结合XPS和XRD表征结果,推断生成的盐类物质为硫酸锰和硫酸铈,从而导致再生后的催化剂的脱硝活性无法恢复到最初的活性水平.由此可以看出,硫酸盐的形成是催化剂在含硫气氛中失活的主要原因.  相似文献   

13.
氮氧化物(NO_x)作为煤炭燃烧过程主要污染物之一,可直接或间接引起如光化学烟雾、酸沉降、平流层臭氧损耗和全球气候变化等大气环境污染问题.NO_x的选择性催化还原技术(SCR)被认为是目前处理固定源NO_x的最有效方法之一.由于燃煤工业锅炉烟气中还有1%~3%的CO,远高于NO_x的0.02%~0.04%,因此,以CO为还原剂进行CO-SCR脱硝具有现实意义,它可在反应过程中同时消除CO和NO两种有害气体,但对催化剂的活性及抗毒性提出更高要求.CeO_2作为一种常用的稀土材料,因具有良好的储放氧能力而广泛应用于SCR反应中.过渡金属改性可进一步改善CeO_2的物化性能,从而可能达到CO-SCR的应用要求.本文利用超临界水热技术合成了MOx-CeO_2(M=Co,Fe,Cu)固溶体催化剂,并利用X射线衍射(XRD),氢气程序升温还原(H2-TPR),傅里叶变换原位红外(DRFTIR)等探究了催化剂在CO-SCR反应中的催化活性与作用机制.CO-SCR反应活性测试表明,CuO-CeO_2催化剂活性明显优于FeOx-CeO_2和CoO_x-CeO_2催化剂,在126°C NO去除率即可达到90%;其N_2选择性也可在179°C时达到90%.为了进一步探究MOx-CeO_2(M=Co,Fe,Cu)催化剂的CO-SCR反应途径,本文随后进行了系列原位DRFTIR实验,发现NO在三种催化剂表面均能被高效吸附,其吸附态中间产物主要为双齿硝酸根,桥式硝酸根,桥式硝基和亚硝酰基等.另外,在CuO-CeO_2催化剂表面还存有螯合硝基和单齿硝酸根.CO在催化剂表面主要以CO_x,碳酸根和羧酸根等形式存在.值得注意的是,在CuO-CeO_2表面,CO因吸附于Cu~+而形成Cu~+-CO,在2100 cm.1左右形成明显的特征峰.当催化剂表面吸附CO至饱和后再通入NO发现,CO的吸附特征峰逐渐被NO的特征吸附峰取代;而当NO被吸附至饱和后再通入CO,NO的特征峰则不出现明显变化.这表明NO和CO在催化剂表面存在竞争吸附,NO可能优先于CO吸附在催化剂表面.当NO和CO同时通入红外反应仓时发现,在CoOx-CeO_2和FeOx-CeO_2催化剂表面只观察到NO的吸附峰,而在CuO-CeO_2催化剂表面观察到Cu~+-CO的特征峰,说明在CO-SCR反应过程中,CO可以在Cu+表面被有效吸附,其与吸附于CeO_2表面的NO物种反应生成N_2和CO_2,遵循Langmuir-Hinshelwood反应机理.而在CoOx-CeO_2和FeOx-CeO_2催化剂表面,因NO的竞争吸附,使得二者主要遵循Eley-Rideal反应机理  相似文献   

14.
采用共浸渍法制备了Mn/Ti-PILC和La掺杂的Mn-La/Ti-PILC(k为La和Mn物质的量比,k=0/1、1/4、1/12和1/20)四种催化剂。研究了La的掺杂对催化剂的低温脱硝效率的影响,同时通过BET、H2-TPR、NH3-TPD和XRD等方法对催化剂进行表征。结果表明,La的掺杂使催化剂的还原温度向低温方向迁移,氧化还原能力得到了提高,催化剂的表面酸量得到提高;La的掺杂有利于催化剂活性的提高,其中,Mn-La/Ti-PILC(k=1/12)催化剂的低温SCR的脱硝活性最高。  相似文献   

15.
Volatile organic compounds (VOCs) are both harmful to human health and the environment; however, catalytic combustion offers a promising method for VOC purification because of its high efficiency without secondary pollution. Although manganese-based catalysts have been well studied for VOC catalytic oxidation, their catalytic activity at low temperature must be improved. Alkali metals as promoters have the potential to modulate the electronic and structural properties of the catalysts, improving their catalytic activity. Herein, a Ce0.65Zr0.35O2 support was prepared by co-precipitation and MnOx/Ce0.65Zr0.35O2 catalysts were obtained through the incipient-wetness impregnation method. The catalytic properties of K-modified MnOx/Ce0.65Zr0.35O2 for toluene oxidation with different molar ratios of K/Mn were investigated. In addition, the catalysts were characterized by XRD, UV/visible Raman, Hydrogen temperature program reduction (H2-TPR), Oxygen temperature programmed desorption (O2-TPD), X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance FTIR spectroscopy (DRIFTS) experiments. The results showed that alkali metal doping with K significantly improved the catalytic activity. In particular, when the molar ratio of K/Mn was 0.2, the monolith catalyst Mn/Ce0.65Zr0.35O2-K-0.2 exhibited the best performance with the lowest complete conversion temperature T90 of 242 ℃ at a GHSV of 12000 h−1. The XRD results suggested that MnOx was uniformly distributed on the surface of the catalyst and that Mn4+ partially reduced to Mn3+ on the addition of K. The Raman spectrum demonstrated that with increasing K content, both the β- and α-MnO2 phases coexisted on the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst, increasing the number of surface defect sites. The H2-TPR experiment results confirmed that Mn/Ce0.65Zr0.35O2-K-0.2 exhibited the lowest reduction temperature and good reducibility. From the O2-TPD experiments, it was clear that Mn/Ce0.65Zr0.35O2-K-0.2 contained the most surface adsorbed oxygen species and excellent lattice oxygen mobility, which benefitted the toluene oxidation activity. In addition, the XPS results suggested that the content of surface adsorbed oxygen species of the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst was the highest among all the tested samples. In addition, toluene-TPSR in N2 as measured by in situ DRIFTs analysis demonstrated that available lattice oxygen was present in the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst. Therefore, the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst exhibited the best redox properties and oxygen mobility of the prepared samples and showed excellent activity toward toluene oxidation. Therefore, it was concluded that the addition of an appropriate amount of K improved the redox performance of the catalyst and increased the number of surface defect sites and mobility of the lattice oxygen of the catalyst as well as the concentration of the surface active oxygen species, thereby significantly improving catalytic ability.  相似文献   

16.
SCR脱硝催化剂失活及其原因研究   总被引:9,自引:0,他引:9  
以运行后的蜂窝型SCR(Selective catalytic reduction)催化剂和新鲜催化剂为研究对象。应用红外光谱、氮气吸脱附、X射线衍射、电镜扫描等手段对新鲜催化剂及运行后催化剂进行表征。结果表明,运行后催化剂表面官能团发生了变化,比表面积严重降低,载体(TiO2)产生了型变,并且催化剂表面微粒出现了团聚现象。对运行后催化剂活性降低的原因进行了研究,结果表明,脱硝催化剂在运行过程中遭遇了突发性高温(如t> 650℃),导致活性出现劣化。此外,催化剂表面沉积物中水溶性离子及砷、磷等物质也对催化活性产生了影响。  相似文献   

17.
加氢是现代化工产业中的一类主干反应,广泛应用于精细化学品、药物、食品、染料、功能聚合物及香料等制造产业中.高效催化剂的引入使得加氢反应能够在相对温和的条件下还原各类不饱和化合物.金属催化剂在加氢反应中活性高,所需的反应温度较低,适用性广,但是容易和S,N,As和P等元素结合而中毒失去反应活性.金属氧化物催化剂和金属硫化物催化剂具有一定的抗毒性,但活性相对较差,通常需要采用高温高压的反应条件,对催化剂本身和反应器的要求较为苛刻.传统催化剂在反应中具有一定的局限性,所以亟需开发新一代高效的加氢催化剂,在保证高活性和高选择性催化效果的同时,降低对能源的消耗和对环境的负面影响.金属有机骨架(MOFs)作为一种新型的多孔材料在过去二十年中受到相当大的关注,并在催化、气体存储和分离、传感器、发光材料和药物输送等众多领域的应用中表现出卓越的性能.利用MOF材料良好的相容性,将MOF和其它功能材料结合形成新的复合材料可以在更大程度上扩大MOF材料的应用领域.与传统的催化剂相比,MOF基材料具有优异的物理化学特性和结构可调性,通过合理的设计能够满足不同的催化加氢过程:(1)MOF基催化剂具有多样且特异性的活性位点.除了组成MOF材料的金属离子/簇和功能有机配体之外,MOF材料可通过封装其他活性物质或者被活性物质包裹等方式引入其他类型的催化位点,进一步扩大MOF基催化剂在不同催化加氢中的适应性.此外,不同的活性位点之间的协同作用又能特异性地促进反应的进行,对提高反应的选择性起到重要的作用.(2)活性位点的尺寸大小和空间分布可以被有效控制.这能影响到催化剂在催化反应过程中的活性和选择性,并且通过MOF材料的限域效应,同时能增强活性位点的稳定性和耐久性.(3)高比表面积能提高MOF基催化剂的催化活性.这种结构特性不仅可以增加MOF基催化剂的活性位点,而且能够吸附反应物和还原剂达到扩大其局部浓度的效果.(4)反应分子的扩散可通过调节MOF基催化剂的结构实现控制.通过调整MOF材料的孔窗口和通道的尺寸,能够改变反应物在催化剂内部的扩散途径,影响底物和活性位点的接触,能进一步影响反应的活性和选择性.本文总结了近几年来MOF基材料在不同的催化加氢反应中的应用,其中包括烯烃、炔烃、芳硝基化合物、肉桂醛、糠醛和苯等化合物的加氢反应.首先介绍了MOF基材料中不同类型的活性位点,除了MOF材料自身的金属离子/簇和功能有机配体外,MOF基复合材料中的金属纳米颗粒?金属硫化物?金属氧化物?均相催化剂等活性位点可以通过封装或包裹的方式引入.在不同加氢反应中,着重介绍了MOF基催化剂中不同类型活性位点的加氢过程中的催化方式、催化剂本身的结构优化及催化剂与反应底物之间的相互作用,以及这些因素之间的协同作用对反应活性和选择性的影响.最后,讨论了MOF基材料在加氢反应中应用存在的问题以及未来发展展望.  相似文献   

18.
以Ho改性Fe-Mn/TiO_2低温SCR脱硝催化剂为研究对象,通过活性评价和一系列表征技术对其低温抗硫性能和催化剂的热还原再生进行研究。结果表明,硫酸铵((NH_4)_2SO_4)在催化剂表面的沉积以及活性组分硫酸化(MnSO_4)是催化剂硫中毒的主要原因。当烟气中的SO_2体积分数低于0.04%时,Fe_(0.3)Ho_(0.1)Mn_(0.4)/TiO_2催化剂呈现出良好的抗硫性。在此条件下,当切断SO_2的供应时催化剂的脱硝活性可获得显著恢复。当通入的SO_2体积分数增加至0.1%时,催化剂会发生不可逆失活。在体积分数5%NH_3气氛下,失活催化剂经过350℃的热还原再生处理60 min后,其微观结构和理化性质能够得到明显恢复,且NO_x转化率可以回升至80%左右。  相似文献   

19.
负载型纳米催化剂表面结构与其催化性能之间关系的研究一直受到广泛关注.由于其结构复杂使得人们在研究催化剂构效关系时遇到了很多困难.近年来,大量研究发现反转催化剂在众多反应中表现出优越的催化性能.反转催化剂是将过渡金属氧化物负载于其它金属表面.和传统金属/氧化物催化剂相比,反转催化剂更能突出氧化物在催化反应中的重要作用.众多研究表明,在氧化物-金属界面处存在特殊的作用,这种作用可以改变氧化物的电子特性和化学性质,进而产生较高的催化性能.傅强等人创建了金属氧化物负载于Pt表面的反转催化体系,其表现出了高的低温CO氧化反应性能.在氧化物和Pt之间的界面限域效应可以稳定氧化物中配位不饱和的金属阳离子.这种配位不饱和的氧化物提供了活化O_2的活性位.目前,反转催化剂的研究主要集中在单晶模型体系中,在负载型催化剂中的研究还较少.我们以炭黑(CB)为载体,将还原后的Pt-Fe和Pt-Co催化剂经过酸洗制备了一种表面富Pt核为合金的结构.考察了酸洗后的Pt-Fe和Pt-Co催化剂经过不同温度氧化后的结构变化,并讨论了其结构与CO完全氧化反应(COOX)和CO选择氧化反应(CO-PROX)性能的关系.X射线粉末衍射(XRD),电感耦合等离子体发射光谱(ICP),透射电镜(TEM)和X射线光电子能谱(XPS)表征结果表明,还原后的Pt基催化剂经过酸洗可以选择性去除纳米粒子表面的3d过渡金属,形成表面富Pt体相为合金的结构.将酸洗后的Pt-Fe和Pt-Co催化剂在不同温度下空气中氧化,发现近表层的Fe(Co)会扩散到粒子表面上,形成过度氧化的Fe_2O_3(Co_3O_4)表面结构.氧化后的催化剂在COOX和CO-PROX反应中表现出截然不同的催化性能.酸洗后的Pt-Fe(Pt-Co)催化剂经过不同温度氧化后在COOX反应中活性都较差,室温下的CO转化率只有不到30%,CO完全转化的温度超过100 ℃,相当于纯Pt催化剂的活性.这说明Pt表面过度氧化的Fe_2O_3(Co_3O_4)对CO氧化反应的促进作用不明显.而氧化后的催化剂在CO-PROX反应中表现出较高的活性,250 ℃(或350 ℃)氧化后的酸洗Pt-Fe催化剂室温下的CO转化率接近100%,250 ℃(或350 ℃)氧化后的酸洗Pt-Co催化剂室温下的CO转化率也达到了70%.结合表征和反应结果,我们认为氧化处理形成的表面过度氧化的金属氧化物(Fe_2O_3,Co_3O_4)在COOX的催化性能较差.通入CO-PROX反应气后,气氛中大量H_2的存在和Pt表面的氢溢流效应可以使得表面Fe_2O_3,Co_3O_4在室温下被还原成配位不饱和的FeO,CoO.这种配位不饱和的氧化物在表面Pt的限域作用和大量H_2气氛下比较稳定,并且具有较强的活化解离O_2的能力,进而提高了CO-PROX反应的活性.为了进一步证实催化剂表面氧化物与其催化性能的关系,我们在室温下进行了两种反应气的循环实验测试.测试结果表明,对于氧化后的酸洗Pt-Fe催化剂,COOX反应中的表面Fe_2O_3和CO-PROX反应中的表面FeO可以通过变换反应气氛实现两种氧化物的相互转变,并表现出完全不同的催化性能.对于氧化后的酸洗Pt-Co催化剂,CO-PROX反应中形成的CoO表面结构在COOX反应中也比较稳定,在两种反应气中表现出相似的催化性能.  相似文献   

20.
通过三聚氰胺、双腈胺、硫脲或尿素的高温热解制备了四种比表面不同的石墨型碳化氮材料(g-C_3N_4),利用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、热重分析(TGA)和N_2吸附方法对所得材料进行结构与表面性质的表征,用CO_2程序升温脱附(CO_2-TPD)和酸碱滴定方法测试了其碱性。考察了这些材料对于不同溶剂中苯甲醛与丙二腈Knoevenagel缩合反应的催化活性。g-C_3N_4在弱极性溶剂甲苯中的催化活性很低,且活性大小与其比表面和表面碱性密切相关,而在极性溶剂乙醇中四种g-C_3N_4的催化活性则相差不大,且都远高于甲苯中的活性。上述结果无法用常规的碱性表征数据来解释。进一步的实验证明在极性溶剂中g-C_3N_4会发生溶胀,使得表面暴露更多的碱性位,因而催化活性大大提高。不同溶剂中的反应结果表明g-C_3N_4的溶胀效应随反应溶剂的极性增加而增强。重复利用实验表明gC_3N_4在液相反应中具有良好的稳定性,其对于苯甲醛的转化率在重复利用三次后由74.2%下降至63.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号