首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derivative heat flow curves give much more information about the phase heterogeneity of binary blends composed of NR, SBR and BR elastomers thanT g. In blend compositions, the areas under the derivative heat flow curves appear to be an additive function of the concentration of elastomers in the case of incompatible blends (NR/BR, NR/SBR). They are less than additive for either a partially compatible blend (uncured SBR/BR) or a compatible blend (covulcanized SBR/BR). In the case of 60/40 SBR/BR blends, a DSC (T 0.5) reveals a singleT g, in conformity with the earlier investigators, whereas the derivative heat flow curve shows two peaks (T p) indicating incomplete homogenization of the phases. This is a new observation not mentioned in the published literature. Thus, derivative heat flow traces are likely to provide a unique tool to determine compatibility of elastomers. The study also reveals the importance of sample contact with the DSC pan in quantitative determinations.  相似文献   

2.
Chlorinated nitrile rubber (Cl-NBR) has been blended with chlorinated ethylene propylene diene rubber (Cl-EPDM) in different ratios by a conventional mill mixing method. The effect of the blend ratio on processing characteristics, mechanical properties (such as tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up and resilience), structure, morphology, glass transition temperature (Tg), thermal stability, flame retardancy, oil resistance, AC conductivity, dielectric properties and transport behavior of petrol, diesel and kerosene were investigated. The shift in absorption bands of blends studied from FTIR spectra, single Tg from DSC analysis and decrease in amorphous nature from XRD showed the molecular miscibility in Cl-NBR/Cl-EPDM blends. SEM images showed the uniform mixing of both Cl-NBR and Cl-EPDM in a 50/50 blend ratio. The TGA curves indicated the better thermal stability of the polymer blend. The elongation at break, heat build-up, resilience and hardness of the polymer blend decreases with an increase in Cl-NBR content in the blend whereas the flame and oil resistance were increased with increase in Cl-NBR content. Among the polymer blends, the maximum torque, tensile strength, tear and abrasion resistance was obtained for the 50/50 blend ratio because of the effective interfacial interactions between the blend components. AC conductivity and dielectric properties of polymer blend increased with increase in the ratio of Cl-NBR in the blend. Different transport properties such as diffusion, permeation and sorption coefficient were measured with respect to nature of solvent and different blend ratios. Temperature dependence of diffusion was used to estimate the activation parameters and the mechanism of transport found to be anomalous.  相似文献   

3.
A small‐angle X‐ray scattering (SAXS) and swelling study of natural rubber and styrene–butadiene rubber blends (NR/SBR) is presented. To this aim, specimens of NR and SBR and blends with 75/25, 50/50, and 25/75 NR/SBR ratios (in phr) were prepared at a cure temperature of 433 K and the optimum cure time (t100). This time was obtained from rheometer torque curves. The system of cure used in the samples was sulfur/nt‐butyl‐2‐benzothiazole sulfenamide. From swelling tests of the cured samples, information about the molecular weight of the network chain between chemical crosslinks was obtained. For all cured compounds, in the Lorentz plots built from SAXS scattering curves, a maximum of the scattering vector q around 0.14 Å?1 was observed. However, the q position shows a linear‐like shift toward lower values when the SBR content in the SBR/NR blend increases. In pure NR or SBR the q values show a different tendency. The results obtained are discussed in terms of the existence of different levels of vulcanization for each single phase forming the blend and the existence of a third level of vulcanization located in the interfacial NR/SBR layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2320–2327, 2009  相似文献   

4.
The ternary blends of acrylate rubber (ACM), poly(ethyleneterephalate) (PET), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP, but fixing the ratio of ACM and PET using melt mixing procedure. The compatibility behavior of these blends was investigated with infrared spectroscopy (IR), differential scanning calorimetry (DSC), and dynamic mechanical analyzer (DMA). The IR results revealed the significant interaction between the blend components. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PET, respectively. This further suggests the strong interfacial interactions between the blend components. In the presence of ACM, the nucleating effect of LCP was more pronounced for the PET. The thermogravimetric (TGA) study shows the improved thermal stability of the blends.  相似文献   

5.
Crystallization of natural rubber (NR) was investigated in different morphology for NR/styrene butadiene rubber (SBR) blend and NR/polystyrene-(b)-polyisoprene (SI)/polystyrene (PS) blend. A purified NR (PC-TE) was prepared from pale crape via transesterification. In the blends, PC-TE formed various morphologies; that is, matrix phase, island phase and continuous phase with a nano-scale, respectively, in dependence upon the ratio of the rubbers. The crystallization rate of the blends was also significantly associated with the morphology of the rubbers.  相似文献   

6.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

7.

Blend films of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by casting from aqueous solutions. This blend films were characterized by tensile strength test, Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The miscibility in the blends of PVA and NaAlg was established on the basis of the thermal analysis results. DSC showed that the blends possessed single, composition‐dependent glass transition temperatures (Tgs), indicating that the blends are miscible. FT‐IR studies indicate that there is the intermolecular hydrogen bonding interactions, i.e. –OH…?OOC– in PVA/NaAlg blends. The blend films also exhibited the higher thermal stability and their mechanical properties improved compared to those of homopolymers.  相似文献   

8.
In the present work, binary blends of carbon black-filled cured rubber, composed of natural rubber (NR) and styrene butadiene rubber (SBR) at three different blend ratios, were subjected to Fourier Transform Infrared (FT-IR) spectroscopic study in attenuated total reflection (ATR) mode. The objective was to use the infrared spectra obtained to calculate a simple general infrared blend parameter (PIR), a characteristic of the NR-SBR blend. The calculation for determining PIR required finding the exact infrared (IR) peak heights for NR and SBR, at 1375 and 699 cm−1, respectively. To obtain the exact peak heights, each of the spectra originally obtained from the IR spectrophotometer was modified using a newly developed numerical algorithmic method of baseline creation on and subsequent subtraction from the original spectrum. A very good baseline fit was achieved using this method. As a result, the numerical calculation of PIR for the NR-SBR blend was possible.  相似文献   

9.
Blends of natural rubber/virgin ethylene-propylene-diene-monomer (NR/EPDM) and natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) were prepared. A fixed amount of carbon black (30 phr) was also incorporated. The effect of the blend ratio (90/10, 80/20, 70/30, 60/40 and 50/50 (phr/phr)) on the compounding, mechanical and morphological properties of carbon-black-filled NR/EPDM and NR/R-EPDM blends was studied. The results indicated that both the carbon-black-filled NR/EPDM and NR/R-EPDM blends exhibited a decrease in tensile strength and elongation at break for increasing weight ratio of EPDM or R-EPDM. The maximum torque (S′MH), minimum torque (S′ML), torque difference (S′MH?ML), scorch time (ts2) and cure time (tc90) of carbon-black-filled NR/EPDM or NR/R-EPDM blends increased with increasing weight ratio of virgin EPDM or R-EPDM in the blend. SEM micrographs proved that, for low weight ratios of virgin EPDM or R-EPDM, the blends exhibited high surface roughness and matrix tearing lines. The blends also showed a reduction in crack path with increasing virgin EPDM or R-EPDM content over 30 phr. This reduction in crack path could lead to less resistance to crack propagation and, therefore, low tensile strength.  相似文献   

10.
Sodium alginate (SA) was blended with varying amounts of poly(ethylene glycol) (PEG) viz., 10, 20, 30, 40 and 50 wt % by using water as a solvent. The obtained SA/PEG blends have been characterized for thermal behavior by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) and surface morphology by scanning electron microscopic (SEM) methods. DSC analysis indicates the increase in glass transition temperature (Tg) of the blends with an increase in PEG content in the blend, which is due to chain entanglement. TGA results reveal the enhancement of thermal stability of SA/PEG blends in terms of the onset of degradation and percentage of weight loss. SEM photomicrographs shows the two phase morphology. This result indicates the immiscible nature of the SA/PEG blends.  相似文献   

11.
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000  相似文献   

12.
The study deals with the morphological and thermal analysis of binary rubber blends of acrylonitrile-co-butadiene rubber (NBR) with another polymer. Either ethylene propylene diene terpolymer (EPDM), ethylene vinyl acetate (EVA), chlorosulphonated polyethylene (CSM), or polyvinyl chloride (PVC) has been selected for the second phase. Depending on the relative polarity and interaction parameter of the components, the binary blends showed development of a bi-phasic morphology through scanning electron microscopy (SEM). Use of different types of thermal analysis techniques revealed that these blends are generally incompatible excepting one of NBR and PVC. Derivative differential scanning calorimetry (DDSC), in place of conventional DSC, has been used to characterize the compatibility behavior of the blends. NBR–PVC shows appearance of only one glass transition temperature (T g) averaging the individual T g’s of the blend components. The partially missible blend of NBR and CSM shows a broadening of T g interval between the phase components, while the immiscible blends of either NBR–EPDM or NBR–EVA do not show any change in T g values corresponding to the individual rubbers of their blend. The experimental T g values were also compared with those calculated theoretically by Fox equation and observed to match closely with each other. Studies have also been made to evaluate the thermal stability of these blends by thermo-gravimetric analysis (TG) and evaluation of activation energy of respective decomposition processes by Flynn and Wall method. Thermo-mechanical analysis (TMA) was found to be effective for comparison of creep recovery and dimensional stability of the blends both at sub-ambient as well as at elevated temperatures.  相似文献   

13.
The miscibility and thermal properties of poly(N‐phenyl‐2‐hydroxytrimethylene amine)/poly(N‐vinyl pyrrolidone) (PHA/PVP) blends were examined by using differential scanning calorimetry (DSC), high‐resolution solid‐state nuclear magnetic resonance (NMR) techniques, and thermogravimetric analysis (TGA). It was found that PHA is miscible with PVP, as shown by the existence of a single composition‐dependent glass transition temperature (Tg) in the whole composition range. The DSC results, together with the 13C crosspolarization (CP)/magic angle spinning (MAS)/high‐power dipolar decoupling (DD) spectra of the blends, revealed that there exist rather strong intermolecular interactions between PHA and PVP. The increase in hydrogen bonding and in Tg of the blends was found to broaden the line width of CH—OH carbon resonance of PHA. The measurement of the relaxation time showed that the PHA/PVP blends are homogeneous at least on the scale of 1–2 nm. The proton spin‐lattice relaxation in both the laboratory frame and the rotating frame were studied as a function of the blend composition, and it was found that blending did not appreciably affect the spectral densities of motion (sub‐Tg relaxation) in the mid‐MHz and mid‐KHz frequency ranges. Thermogravimetric analysis showed that PHA has rather good thermal stability, and the thermal stability of the blend can be further improved with increasing PVP content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 237–245, 1999  相似文献   

14.
Rubber blends are widely used for combining the advantages of individual rubber component. However, to date, how to determine and distinguish the vulcanization kinetics for each single rubber phase in rubber blends during the co-vulcanization process are still a challenge. Herein, high resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) was employed for the first time to investigate the vulcanization kinetics of natural rubber (NR) and styrene-butadiene rubber (SBR) in their blends filled with graphene. It is shown that the crosslinking rate of NR chains (kNR) was much lower than that of SBR chains (kSBR) in the unfilled blends and blends with untreated graphene. Interestingly, the gap between kSBR and kNR was narrowed effectively in the blends with vulcanization accelerator grafted graphene, showing a better co-vulcanization of NR and SBR. In addition, the vulcanization accelerator grafted graphene was uniformly dispersed in rubber matrix and endowed rubber blends with higher mechanical strength and thermal conductivity did the untreated graphene.  相似文献   

15.
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer.  相似文献   

16.
The miscibility and the thermal behaviour of chitosan acetate (ChA) with poly(vinyl alcohol) (PVA) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Chitosan is blended with poly(vinyl alcohol) in acetic acid solution and this solution is cast to prepare the blend film. From thermal curves the thermal transitions: Tg, Tm and characteristic temperatures of decomposition: Tdi, Tmax have been determined and compared. The influence of the degree of PVA hydrolysis on the thermal properties of blend systems has been discussed.Based upon the observation on the DSC analysis, the melting point of PVA is decreased when the amount of ChA in the blend film is increased. Though some broadening of the transition curves could be noticed (DSC, TGA and DMA), the obtained results suggest that in the solid ChA/PVA blends the components are poorly miscible. Only PVA sample with relatively low DH = 88% and hence low degree of crystallinity shows partial miscibility with ChA of relatively low molecular weight.  相似文献   

17.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Lifetime spectra of positrons were measured for styrene–butadiene rubber (SBR) vulcanizates filled with carbon black (CB) or silica. At temperatures between 10 and 420 K, no large difference between the size of the open spaces in the CB/SBR vulcanizate and that in the specimen without the filler was observed. Above the glass‐transition temperature (Tg = 230 K), the same was true for the silica/SBR vulcanizate. Below Tg, however, the size of the open spaces was reduced by the incorporation of silica as a result of the suppression of local molecular motions in the SBR. The density of the open spaces was reduced by the incorporation of the fillers. However, above 400 K it started to increase in the silica/SBR vulcanizate. For the CB/SBR vulcanizate, the introduction of open spaces was well suppressed, even at 420 K. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 835–842, 2001  相似文献   

19.
Graft copolymer of natural rubber and poly(dimethyl(methacryloyloxymethyl)phosphonate) (NR‐g‐PDMMMP) was prepared in latex medium via photopolymerization. It was then used to promote the blend compatibility of dynamically cured 40/60 natural rubber (NR)/ethylene vinylacetate copolymer (EVA) blends using various loading levels at 1, 3, 5, 7, 9, 12, and 15 wt%. It was found that the increasing loading levels of NR‐g‐PDMMMP in the blends caused the increasing elastic modulus and complex viscosity until reaching the maximum values at a loading level of 9 wt%. The properties thereafter decreased with the increasing loading levels of NR‐g‐PDMMMP higher than 9 wt%. The smallest vulcanized rubber particles dispersed in the EVA matrix with the lowest tan δ value was also observed at a loading level of 9 wt%. Furthermore, the highest tensile strength and elongation at break (i.e., 17.06 MPa and 660%) as well as the lowest tension set value (i.e., 27%) were also observed in the blend using this loading level of the compatibilizer. Addition of NR‐g‐PDMMMP in the dynamically cured NR/EVA blends also improved the thermal stability of the blend. That is, the decomposition temperature increased with the addition of the graft copolymer. However, the addition of NR‐g‐PDMMMP in the blends caused the decreasing degree of crystallinity of the EVA phase in the blend. However, the strength properties of the blend are still high because of the compatibilizing effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A procedure for the formation of intimate blends of three binary polymer systems polycarbonate (PC)/poly(methyl methacrylate) (PMMA), PC/poly(vinyl acetate) (PVAc) and PMMA/PVAc is described. PC/PMMA, PC/PVAc, and PMMA/PVAc pairs were included in γ‐cyclodextrin (γ‐CD) channels and were then simultaneously coalesced from their common γ‐CD inclusion compounds (ICs) to obtain intimately mixed blends. The formation of ICs between polymer pairs and γ‐CD were confirmed by wide‐angle X‐ray diffraction (WAXD), fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). It was observed [solution 1H nuclear magnetic resonance (NMR)] that the ratios of polymers in coalesced PC/PMMA and PC/PVAc binary blends are significantly different than the starting ratios, and PC was found to be preferentially included in γ‐CD channels when compared with PMMA or PVAc. Physical mixtures of polymer pairs were also prepared by coprecipitation and solution casting methods for comparison. DSC, solid‐state 1H NMR, thermogravimetric analysis (TGA), and direct insertion probe pyrolysis mass spectrometry (DIP‐MS) data indicated that the PC/PMMA, PC/PVAc, and PMMA/PVAc binary polymer blends were homogeneously mixed when they were coalesced from their ICs. A single, common glass transition temperature (Tg) recorded by DSC heating scans strongly suggested the presence of a homogeneous amorphous phase in the coalesced binary polymer blends, which is retained after thermal cycling to 270 °C. The physical mixture samples showed two distinct Tgs and 1H T values for the polymer components, which indicated phase‐separated blends with domain sizes above 5 nm, while the coalesced blends exhibited uniform 1H spin‐lattice relaxation values, indicating intimate blending in the coalesced samples. The TGA results of coalesced and physical binary blends of PC/PMMA and PC/PVAc reveal that in the presence of PC, the thermal stability of both PMMA and PVAc increases. Yet, the presence of PMMA and PVAc decreases the thermal stability of PC itself. DIP‐MS observations suggested that the degradation mechanisms of the polymers changed in the coalesced blends, which was attributed to the presence of molecular interactions between the well‐mixed polymer components in the coalesced samples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2578–2593, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号