首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
2.
The recycling of post-consumer plastics and their utilization as raw materials to develop value-added products has become an important goal worldwide. The present work is concerned with the thermo-mechanical analysis of recycled high-density polyethylene (HDPE) under uniaxial tensile loading. The main focus is to propose a one-dimensional phenomenological model able to describe the influence of temperature and strain rate on the mechanical behavior. Tensile tests were performed over a wide range of temperatures (from 25°C to 100°C). Each experiment was performed under controlled strain rate varying from 7.25 × 10−5 s−1 to 7.25 × 10−3 s−1 in steps. It is shown that only one tensile test performed at three different temperatures is necessary to fully identify experimentally all material parameters that arise in the theory. Thus, with this experimental procedure, the number of tests used to evaluate the mechanical properties of recycled HDPE is significantly reduced. The experiments are compared with the model predictions and show good agreement.  相似文献   

3.
4.
HDPE is commonly used in pipelines and piping for industrial and societal infrastructure. Like most polymers, HDPE's mechanical properties are sensitive to temperature and show time dependent properties. The temperature effect on both the short and long term compressive and tensile behavior of HDPE, in a combined manner, have not been investigated thoroughly in the past. Especially the constitutive behavior of HDPE, incorporating temperature effects on its long and short term behavior, could be essential when designing such infrastructural components. Hence, the temperature effect on the short and long term response in tension and compression of HDPE is investigated in this study. The short term tensile and compressive stress-strain behavior at 23, 40, 60, and 80 °C were obtained through experiments at constant displacement rate and temperature. Tensile and compressive stress relaxation (e.g. long term) behavior at 23, 40, 50, 60, 70, and 80 °C were investigated through stress relaxation tests. The experimental results from the short term tests showed that both the tensile and compression moduli and yield strength of HDPE decrease linearly with the increase in temperature. It is also shown from the long term test that relaxation modulus in tension and compression are highly dependent on temperature. Based on the experimental results, the constitutive three network model (TNM) was calibrated and implemented in a FEA model, which was then validated through a three point bending (3 PB) relaxation test with a prescribed temperature profile. The FEA model and the calibrated model results agree markedly well with the experimental results, which indicates that the model can be used reliably to predict the temperature dependent short and long term behavior of HDPE in design and analysis of HDPE components.  相似文献   

5.

Environmental stress cracking resistance (ESCR) is an important indicator of performance for high density polyethylene (HDPE) in structural and polymer pipe applications. The commonly used test for determining ESCR of HDPE can be time consuming and rather imprecise. A tensile strain hardening test was recently proposed to offer a faster way to characterize ESCR of polyethylene. In this paper, a practical approach is adopted whereby the test is extended to room temperature and shown to relate reliably to the ESCR of HDPE. Several HDPE resins (including pipe‐grade resins) are analyzed at strain rates of 0.5 mm/min and 7 mm/min to compare the effect of strain rate. Comparisons between the conventional ESCR test method and the strain hardening test show that strain hardening can be used to rank ESCR of HDPE in a reliable fashion. In our study the more direct measure of “hardening stiffness” is used to compare resins instead of strain hardening modulus. Because no true stress‐strain measurement is needed, this is a much simpler test method than other methods previously suggested. In addition, the use of the natural drawing ratio (NDR) as ESCR ranking indicator is examined. Results show that NDR can also be employed as a strain rate‐independent indicator of ESCR of HDPE. The test proposed herein is practical, simple and precise, and hence a more reliable indicator of ESCR performance of HDPE.  相似文献   

6.
The mechanical responses of high‐density polyethylene (HDPE), polypropylene (PP) and polyamide 6 (PA 6) were experimentally investigated for a wide range of stress states and strain rates. This was accomplished by testing numerous specimens with different geometries. The uniaxial compression of cylindrical unnotched specimens and the uniaxial tensile behaviour of dumbbell specimens at different strain rates, was determined. A series of biaxial loading tests (combined shear and tension/compression, pure shear, pure tension/compression) using a designed Arcan testing apparatus were also performed. Flat and cylindrical notched specimens with different curvature radii were additionally tested in order to explore a wider range of stress states. The Drucker‐Prager yield criterion was calibrated with a set of experimental data, for which analytical formulae for stresses are available, and then applied to predict the deformation behaviour under different stress states, prior to strain localization. The results of the numerical simulations show that the Drucker‐Prager model can capture the initial elastic range and the post‐elastic response very satisfactorily. For triaxial and biaxial stress states there is a good agreement, however some load‐displacement responses are only satisfactorily described. Deviations observed in the predicted and experimental results are very likely attributed to the third invariant stress tensor, which was not explored in the model calibration. The evolution of stress triaxiality and Lode angle parameters with equivalent plastic strain were extracted and analysed for several specimens. The results show a plastic yielding behaviour sensitive to the stress state, which can be attributed to different combinations of stress triaxialities and Lode angle parameters.  相似文献   

7.
Unlike metal pipes, high density polyethylene (HDPE) pipes are not susceptible to erosion and corrosion. However, the most important mechanical feature of the HDPE pipes is that this material creeps even at room temperature. Therefore, it is essential to study the creep behavior of this material in order to develop a model. In this paper, creep behavior of HDPE at different temperature and stress levels has been experimentally studied to obtain the creep constitutive parameters of the material. These parameters are used to predict the creep behavior of different structures such as HDPE pipes. For this purpose, a number of specimens have been machined from industrial manufactured pipe walls. Uniaxial creep tests have been carried out and creep strain curves with time for each test were recorded. Then, a constitutive model is proposed for HDPE based on the experimental data and optimization methods. The results of this model have been compared with the test data and good agreement is observed. The developed constitutive model and reference stress method (RSM) were used to produce graphs which provide optimum creep lifetime and design conditions for HDPE pipes that are subjected to combined internal pressure and rotation. These graphs can facilitate the design process of HDPE pipes.  相似文献   

8.
Several techniques of polymer characterization and different ageing methods have been used with the aim of developing a simple, fast and reliable method to qualify commercial pipe-grade polyethylene samples, and possibly to evidence the presence of recycled PE within PE pipes. The results of the different techniques used have been compared with respect to their capability to evidence differences in the degradation rate of different HDPE samples (including virgin HDPE, HDPE pipes obtained from virgin HDPE and HDPE pipes that probably contain recycled HDPE). FT-IR, TGA and DSC were found unsuitable for this purpose but, on the contrary, MFI measurements have been found sensitive enough to evidence different degradation rates when a suitable combination of high temperature, oxygen, mechanical stresses and mixing time had been used for ageing the sample.  相似文献   

9.
The uv stabilising effect of various stabilisers added to degraded, yellow-pigmented, high density polyethylene (HDPE) crate material originating from crates that have been in use for 10–13 years was investigated. For that purpose, outdoor and Xenotest-1200 exposure tests were carried out, and rates of oxygen absorption during photo-oxidation were determined. The uv stability of the degraded HDPE could be considerably improved—in particular, by the addition of a hindered amine type stabiliser (Tinuvin 770). The uv stability attainable is such that reuse of recycled crate material for the production of new crates is, after upgrading, a realistic possibility.A comparison of the results of outdoor and accelerated ageing showed that the acceleration factors strongly depend on the type of stabiliser applied. This can be attributed to the different mechanisms of stabilisation by which the various additives act.The uv stability of the recycled polymer appeared to be almost independent of the degree of degradation of the crates before recycling. This implies that it is not necessary to exclude from recycling heavily degraded crates which had failed due to brittle fracture.  相似文献   

10.
单向应力条件下松弛时间率相关的非线性粘弹性本构模型   总被引:1,自引:0,他引:1  
基于单向拉伸实验研究和内变量理论 ,提出了一种新的简单的一维非线性粘弹性本构关系 .对两种粘弹性材料 ,即高密度聚乙烯和聚丙烯进行了不同加载速率作用下的拉伸实验研究 ,实验结果表明 ,两种材料的应力应变关系与加载速率相关 ;对材料的应力应变实验数据进行拟合发现 ,材料的松弛时间具有很强的应变率相关性 ,当应变率发生数量级变化时 ,材料的松弛时间也发生数量级的变化 .采用内变量理论 ,导出了在单轴应力条件下松弛时间率相关的非线性粘弹性本构关系的迭代形式 ,并给出其收敛条件 .当采取一次迭代形式时 ,本构关系退化为松弛时间率相关的Maxwell模型 .数值拟合的结果表明 ,一次迭代形式的本构关系就可以很好地拟合和预测实验结果 .  相似文献   

11.
Observations are reported on high-density polyethylene (HDPE) and nanocomposite, where HDPE matrix is reinforced with montmorillonite (MMT) nanoclay, in uniaxial cyclic tensile tests with various cross-head speeds ranging from 1 to 50 mm/min. Each cycle of deformation involves tension up to the maximal strain ?max = 0.1 and retraction down to the zero stress. The study focuses on low-cycle deformation programs with N = 5 cycles in each test.A constitutive model is derived for the viscoplastic response of polymers at three-dimensional cyclic deformations with small strains. Given a strain rate and a maximum strain, the stress-strain relations involve eight material constants that are found by fitting the experimental data. Good agreement is demonstrated between the observations and the results of numerical simulation. It is shown that the rate of cyclic deformation affects the adjustable parameters in a physically plausible way.  相似文献   

12.
Binary blends of recycled high‐density polyethylene (R‐HDPE) with poly(ethylene terephthalate) (R‐PET) and recycled polystyrene (R‐PS), as well as the ternary blends, i.e. R‐HDPE/R‐PET/R‐PS, with varying amounts of the constituents were prepared by twin screw extruder. The mechanical, rheological, thermal, and scanning electron microscopy (SEM) analyses were utilized to characterize the samples. The results revealed that both R‐HDPE/R‐PET and R‐HDPE/R‐PS blends show phase inversion but at different compositions. The R‐PET was found to have much higher influence on the properties enhancement of the R‐HDPE compared to R‐PS, but at the phase inverted situation, a significant loss in the tensile strength of R‐HDPE/R‐PET blend was observed due to the weak interaction at this morphological state. However, the ternary blends with higher loading of second phase, namely greater than 50 wt% of R‐PET+R‐PS, demonstrated better mechanical properties than the binary blends with the same content of either R‐PET or R‐PS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The widespread use of plastics in the conditioning, packaging and building material sectors generates an enormous amount of industrial waste which could be recycled for wastewater pipes and fittings. Nevertheless, current manufacturing standards in the piping industry recommend against the use of post-consumer recycled materials—a policy based on inadequate understanding of the properties and long-term mechanical performance of recycled materials. The present study compared the material characteristics of virgin and recycled high-density polyethylene (HDPE) plastics commonly found in the piping industry. Mechanical testing, oxidative induction time (OIT), melt flow index (MFI) and thermal analysis were used in conjunction with X-ray fluorescence (μ-XRF), size exclusion chromatography and 13C solid-state NMR to evaluate mechanical behavior and molecular structure as well as contaminant or filler contents. This study provides evidence for the degradation processes impact that can occur when post-industrial and post-consumer polymers are recycled. However, the study identified two measures to improve the material qualities of post-consumer recycled HDPE: 1) reducing the amount of contaminants or, alternatively, improving their compatibility with HDPE resins, and 2) improving current sorting and recycling processes to increase the amount of tie molecules in HDPE materials.  相似文献   

14.
In this paper, we studied the container-content interaction between a high-density polyethylene-based packaging (HDPE) and amyl acetate solution considered as diffusing agent. We were specifically interested in the impact of sorption and diffusion phenomena on the mechanical properties of HDPE bottles under static conditions at different stages of physical aging. Several uniaxial tests were realized on samples cut from bottles and structural tests were performed on bottles. The analysis of such various experimental results highlighted the Fickian nature of the diffusion phenomenon and the decrease of the compression strength of the bottles with the preconditioning time. We have also focused on the modelling of the mechanical behavior of HDPE taking into account the mass transfer induced by the diffusion phenomenon. Elastic-viscoplastic model was proposed and implemented in the finite element code ABAQUS. The parameters of this model were identified from tensile tests by solving an optimization problem. The identified models have been validated by numerical simulation of top-load compression of HDPE bottles. The obtained numerical results are in a good agreement with experimental measurements.  相似文献   

15.
通过熔融共混法制备了高密度聚乙烯(HDPE)与烯烃嵌段共聚物(OBC)的共混物,研究了HDPE含量对共混体系结晶和拉伸行为的影响.实验结果表明,共混物熔体存在相分离.结晶时两组分互相影响,出现共结晶现象.共混物具有优异弹性回复与高断裂伸长率,而拉伸模量与断裂强度随着HDPE含量增加而逐渐增大.借助Slip-link橡胶弹性理论对应力应变曲线进行了分析,发现拉伸曲线可以很好的用理论模型进行拟合.将共混物的微观结构变化同模型参数进行了对比,建立了共混物结构和性能的有效关联.  相似文献   

16.
用热拉法制备了高密度聚乙烯(HDPE)/全同立构聚丙烯(iPP)共混物超拉伸纤维,研究了拉伸比对其热行为及力学行为的影响,随拉伸比增加,纤维中HDPE与iPP的结晶度增大,熔融温度升高、熔程变宽;纤维中HDPE与iPP的结晶度低于其纯组分,熔融湿度与熔程基本不受组分比的影响,随拉伸比增加,纤维的模量增高,以HDPE为主的纤维的拉伸强度增大,以iPP为主的纤维拉伸强度增至一定值后,不再随拉伸比增加而增大,并有下降趋势。  相似文献   

17.
傅强 《高分子科学》2009,(2):267-274
A new type of SiO_2-MgO-CaO (SMC) whisker was used to modify high density polyethylene (HDPE).The melting behavior and crystallinity were investigated by differential scanning calorimetry (DSC).The dispersion of whiskers and interfacial adhesion in the prepared HDPE/SMC whisker composites were investigated by scanning electron microscopy (SEM).The mechanical properties were evaluated by mechanical tests and dynamic mechanical analysis (DMA).DSC data indicated that the melting temperature and the crystall...  相似文献   

18.
Tensile tests on poly (methyl methacrylate) (PMMA) were conducted to clarify the effects of humidity and strain rate on tensile properties, particularly Young's modulus. Prior to the tensile tests, specimens were kept under various humidity conditions at 293 K, which were the same as the test conditions, for a few months to adjust the sorbed water content in the specimens. The tensile tests were performed under each humidity condition at three different strain rates (approximately 1.4 × 10?3, 1.4 × 10?4, and 1.4 × 10?5 s?1). Stress‐strain curves changed with humidity and strain rate. Young's moduli were also measured at small applied stresses (below 6.7 MPa) under various humidity conditions at 293 K. Young's modulus decreases linearly with increasing humidity and a decreasing logarithm of strain rate. These results suggest that Young's modulus of PMMA can be expressed as a function of two independent parameters that are humidity and strain rate. A constitutive equation for Young's modulus of PMMA was proposed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 460–465, 2002; DOI 10.1002/polb.10107  相似文献   

19.
The polyvinyl butaral (PVB) interlayer of automotive windshield plays an important role in the protection of both pedestrian and passenger, the mechanical property of PVB material should be in‐depth studied. In this article, the systematical uniaxial tensile experiments of PVB material under high strain rates are conducted, the strain rates range from 125.6 to 3768 s?1. The results of experiments show that there exists a phenomenon of stress spurt caused by the stress hardening in the final stage of tension, and the strain rate exerts great influence on mechanical property of PVB material. Further, the data fitting basing on Mooney–Rivlin model is carried out, it is found that the fitting results are consistent with the experiment data, which means that the Mooney–Rivlin constitution model can describe the large deformation behavior of PVB material. At last, the rate‐dependent mechanical behavior of the PVB material is further investigated in this article. On the basis of the experiment results and Johnson–Cook model, a rate‐dependent constitutive model is proposed to describe the tensile mechanical property of PVB material under high strain rates. This work will be beneficial to the simulation and analysis of automotive collision safety and pedestrian safety protection, which are related to damage of automotive windshield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this work new insights are presented on the measurement of the tangent and secant moduli from stress–strain curves in polymeric systems. Expressions for the strain-rate and strain dependence of both moduli are derived for systems characterised by a distribution of relaxation times. The equivalent frequency of the stress–strain experiments is shown to be dependent on the strain rate and on the strain at which the measurements are carried out. Such considerations enable using quasi-static tensile stress–strain tests to study relaxational processes in polymeric materials. The tensile behaviour of a 30% glass fibre reinforced polyamide 6 was characterised at different strain rates and temperatures, covering the glass transition region. A master curve of the tangent modulus as a function of strain rate was successfully constructed by simple horizontal shifting of the isothermal data. The temperature dependence of the shift factors was well described by the WLF equation. It was also possible to fit the master curve considering a polymeric system with a distribution of relaxation times, relevant parameters such as the KWW β parameter being extracted. The results were found to be consistent with dynamic mechanical analysis results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号