首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
吴勇  胡征  陈方  陈懿 《化学学报》2001,59(11):1904-1908
通过调变反应温度,制得了B含量变化范围较大的Fe100-xBx(x=23~40)系列纳米金属玻璃。用Mossbauer,ICP,XRD,TEM,DSC等实验手段,研究了制备条件对B含量的影响及其原因,样品的结构、晶化温度/微粒的聚集状态和表观粒度等物性与反应温度(B含量)的关系,揭示了Fe-B纳米金属玻璃的化学制备研究中反应温度的重要作用。  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - Energy utilization in building sector constitutes 40% of the total energy consumption of the world, and in this, the wall alone consumes 50% of the...  相似文献   

3.
A theoretical approach has been used to show that, except for certain types of reaction mechanism, the ease with which it is possible to distinguish the form of the reaction mechanism by the reduced-time plot method depends particularly on the rate of transfer of heat into the sample. The original reduced-time plots [1] were calculated from model equatioons which assume that the sample is, from the outset, at a fixed temperature and remains under isothermal conditions throughout the reaction. The variations produced in the appearance of reduced-time plots when the sample is programmed to rise to a given fixed temperature through various temperature schedules have been investigated. It is shown that even relatively rapid temperature rises can produce distortion of the reduced-time plots for various reaction equations. If the reaction mechanism is known, however, fairly accurate values of the activation energy for the reaction can be determined, even when the furnace used has relatively poor heat-transfer characteristics. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   

4.

Molten-salt-based nanofluids and ionic-liquid-based nanofluids are developed for thermal storage and heat transfer at relatively high temperatures, in the past few years. Preparation and stabilization techniques are briefly introduced firstly, and then, thermal properties, e.g., specific heat, thermal conductivity and viscosity, are summarized and discussed in detail. The properties are not only affected by the characteristics of nanomaterials and base fluids, but also affected by the synthesis method, such as the sonication intensity and duration. Some of the thermophysical property data are still incomplete, especially the thermal conductivity of molten-salt-based nanofluids, and properties of ionic-liquid-based nanofluids at high temperatures. While several literature works show that the Krieger–Dougherty model can well predict the viscosity, no general models for thermal conductivity and specific heat have been developed yet for both types of nanofluids.

  相似文献   

5.
Journal of Thermal Analysis and Calorimetry - Heat transfer of MgO-EG nanofluid flowing in a double tube heat exchanger with an inner tube containing a partial porous material under laminar and...  相似文献   

6.
The interactions with water and the physical properties of microfibrillated celluloses (MFCs) and associated films generated from wood pulps of different yields (containing extractives, lignin, and hemicelluloses) have been investigated. MFCs were produced by combining mechanical refining and a high pressure treatment using a homogenizer. The produced MFCs were characterized by morphology analysis, water retention, hard-to-remove water content, and specific surface area. Regardless of chemical composition, processing to convert macrofibrils to microfibrils resulted in a decrease in water adsorption and water vapor transmission rate, both important properties for food packaging applications. After homogenization, MFCs with high lignin content had a higher water vapor transmission rate, even with a higher initial contact angle, hypothesized to be due to large hydrophobic pores in the film. A small amount of paraffin wax, less than 10%, reduced the WVTR to a similar value as low density polyethylene. Hard-to-remove water content correlated with specific surface area up to approximately 50 m2/g, but not with water retention value. The drying rate of the MFCs increased with the specific surface area. Hornified fibers from recycled paper also have the potential to be used as starting materials for MFC production as the physical and optical properties of the films were similar to the films from virgin fibers. In summary, the utilization of lignin containing MFCs resulted in unique properties and should reduce MFC production costs by reducing wood, chemical, and energy requirements.  相似文献   

7.
The objective of this study was to understand fluid heat and mass transfer processes in porous media with different pore structures. High-resolution Magnetic Resonance Imaging was used to measure fluid flow velocity and temperature maps in porous media. Firstly, three orthogonal velocity components (V x , V y , and V z ) of single phase flow measurement were evaluated. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure, and the velocity in large pore is high. Then we presented initial results from the extension of this work to two-phase flow. The CO2 channeling phenomena were obvious. And the CO2 velocity was calculated from saturation of water. Finally, the linearity relationship between temperature and the MRI parameter was determined for porous media, and we measured the temperature distribution of water saturated porous media. The study provides useful data for heat and mass process during CO2 storage.  相似文献   

8.
This paper presents the quantitative application of the Metal Blocked Differential Thermal Analysis (MBDTA). Calibrations have been electrically carried out by using three types of calibration heaters (pen, ring and spiral), which are placed inside the sample. By means of this arrangement, thermophysical properties of the samples make the quantitative evaluation of the results easy. The influence of the size and sample diameter, the types of heater, the space between heater and thermocouple, in other words, the factors affecting calibration and the effect of the heat transfer geometry on the determination of the fusion heat have been investigated.
Zusammenfassung Vorliegende Arbeit stellt eine quantitative Anwendung der Metallblock-DTA (MBDTA) dar. Es wurden elektrisch Kalibrationen mit verschiedenen, innerhalb der Probe befindlichen Kalibrationserhitzern (Stift, Ring, Spirale) durchgeführt. Mit Hilfe dieser Anordnung wird die Auswertung der Ergebnisse durch die thermophysischen Eigenschaften der Probe erleichtert. Es wurde der Einfluß von Größe und Probendurchmesser, von Erhitzertyp, von Abstand zwischen Erhitzer und Thermoelement, mit anderen Worten von denjenigen Faktoren, die die Kalibration beeinflussen sowie der Einfluß der Wärmetransportgeometrie auf die Bestimmung der Schmelzwärme untersucht.
  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - Sublimator offers effective heat rejection for the spacecraft, which work in warm environments or with peak heat loads, by evaporating or sublimating...  相似文献   

10.
Journal of Thermal Analysis and Calorimetry - In the present study, the thermal performance of horizontal shell and tube heat exchanger with a new TiO2–Ag/Distilled water nanocompositefluid...  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - The convective heat transfer coefficient (CHTC) of a fluid is one of the most effective factors on the performance of a fluid in heat transfer...  相似文献   

12.
Coarse‐grained chains can be designed so that they successfully capture subtle effects arising from the local covalent structure of real chains. Constraining the conformations of the coarse‐grained chains with an appropriate rotational isomeric state model can achieve this objective. This claim has been documented by simulations of the dependence of the mixing behavior of polypropylene melts on the stereochemical composition of the chains; atactic polypropylene and isotactic polypropylene are miscible, but the replacement of either component with syndiotactic polypropylene can lead to immiscibility. This has also been documented by a comparison of simulations and infrared–visible sum frequency generation spectroscopy studies of the surface structures of atactic polystyrene and random copolymers of ethylene and propylene. The success of this method when the stereochemical composition is defined by side chains as small as CH3 suggests that it should also be applicable to other problems in which the influence of the stereochemical composition is less subtle because the stereochemistry is defined by larger side chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1271‐1282, 2005  相似文献   

13.
Journal of Thermal Analysis and Calorimetry - Arid regions around the world are characterized by hard summer and winter seasons, which leads to thermal discomfort. The southwest of Algeria is...  相似文献   

14.
The structure, energetics, and physical properties, including rotational constants, characteristic vibrational temperatures, dipole moment, static polarizability, HOMO-LUMO gap, formation enthalpy and collision diameter of different isomeric forms of atomic Al n H m and B n H m clusters with n = 1..4 and all feasible m numbers are studied within the density functional theory framework. The search of isomer structures has been accomplished using multistep hierarchical algorithm. Temperature dependences of thermodynamic functions (enthalpy, entropy and specific heat capacity) have been calculated both for the individual isomers and for the ensemble of isomers with equilibrium composition for each class of clusters, taking into account the anharmonicity of cluster vibrations and the contribution of excited electronic states. The prospects of the application of small atomic Al n H m and B n H m clusters as the components of energetic and hydrogen storage materials are also discussed.  相似文献   

15.
In calorimetry, the heat-flow to or from a sample is measured as a function of time (isothermal calorimetry) or temperature (scanning calorimetry). The technique is not dependent on the physical form of the sample and is usually non-destructive (exceptions include temperature-induced irreversible phase transitions and thermal decomposition). The inherent sensitivity of modern instruments allows measurements on the micro-Watt scale. Calorimetry is highly suited to the study of pharmaceutical systems because small sample masses are usually required and the technique is very sensitive to changes induced by, for instance, formulation or processing. It is the purpose of this review to show applications of both isothermal and scanning calorimetry in the field of physical and bio-physical pharmacy. Potential applications include studies of physical stability, excipient compatibility, chemical stability and the study of the potential interactions of and between macromolecules such as lipids, surfactants, and nucleic acids.  相似文献   

16.
Cellulose acetate (CA) hollow fibers were spun via the dry‐jet wet spinning technique under various external coagulant compositions and temperatures. The surface morphology of the resulting hollow fiber was examined using field emission scanning electron microscopy (FESEM) and tapping mode atomic force microscopy (TMAFM). The pure water permeability (PWP) and the retention of dextran of the hollow fiber were also measured. The results showed that both the temperature and composition can affect greatly the surface morphology and hence the permeation performance of hollow fiber membranes when the temperature was over 55°C and the dimethyl formamide (DMF) content was higher than 15%. The on‐line draw ratio increased with the coagulant temperature and DMF content (in the range of 0 to 10%) in the external coagulant. The ultimate tensile strength also increased when the fibers were coagulated in 5–10% DMF and at 70°C. The PWP increased with the DMF content in the coagulant and the coagulant temperature. The retention of dextran decreased with the increase of the DMF content in the coagulant and the coagulant temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Journal of Thermal Analysis and Calorimetry - The article presents the results of an extensive experimental study focused on the effect of supplementary cementitious materials (SCMs) on concrete...  相似文献   

18.
Temperature and heat-flux measurement at the microscale for convective heat-transfer studies requires highly precise, minimally intrusive sensors. For this purpose, a new generic temperature and heat-flux sensor was designed, calibrated and tested. The sensor allows measurement of temperature and heat flux distributions along the direction of flow. It is composed of forty gold thermoresistances, 85 nm thick, deposited on both sides of a borosilicate substrate. Their sensitivities are about 37.8 μV K(-1), close to those of a K-type wire thermocouple. Using a thermoelectrical model, temperature biases due to the Joule effect were calculated using the current crossing each thermoresistance and the heat-transfer coefficient. Finally, heat-transfer measurements were performed with deionized water flowing in a straight PDMS microchannel for various Reynolds numbers. The Nusselt number was obtained for microchannels of 50 to 10 μm span. The results were found to be in good agreement with classical Nu-Re macroscopic correlations.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - The hydrothermal stability of titanium oxide (TiO2) made it a potential candidate in nanofilm (NF) coating on heating substrate for pool boiling...  相似文献   

20.
Density, speed of sound, refractive index, and dynamic viscosity of the ionic liquids (ILs) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, BMpyr NTf2, and trihexyl(tetradecyl) phosphonium dicyanamide, P66614 dca, were studied as a function of temperature at atmospheric pressure. Thermal expansion coefficient, αp, molecular volumes, and standard entropies of these ILs were calculated from the experimental density values. The solubility of three aromatic components (benzene, toluene, and ethylbenzene) in the selected ILs was carried out at T = 298.15 K and atmospheric pressure and compared with literature values for sulfolane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号