首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Let G be an undirected simple connected graph, and e = uv be an edge of G. Let N G(e) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v. Let N e be the class of all graphs H such that, for some graph G,N G (e) H for every edge e of G. Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in N e. Balasubramanian and Alsardary [1] obtained some other graphs in N e. In this paper we given some new graphs in N e.  相似文献   

3.
A simple argument by Hedman shows that the diameter of a clique graph G differs by at most one from that of K(G), its clique graph. Hedman described examples of a graph G such that diam(K(G)) = diam(G) + 1 and asked in general about the existence of graphs such that diam(Ki(G)) = diam(G) + i. Examples satisfying this equality for i = 2 have been described by Peyrat, Rall, and Slater and independently by Balakrishnan and Paulraja. The authors of the former work also solved the case i = 3 and i = 4 and conjectured that such graphs exist for every positive integer i. The cases i ≥ 5 remained open. In the present article, we prove their conjecture. For each positive integer i, we describe a family of graphs G such that diam(Ki(G)) = diam(G) + i. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 147–154, 1998  相似文献   

4.
A graph G is k‐ordered if for every ordered sequence of k vertices, there is a cycle in G that encounters the vertices of the sequence in the given order. We prove that if G is a connected graph distinct from a path, then there is a number tG such that for every ttG the t‐iterated line graph of G, Lt (G), is (δ(Lt (G)) + 1)‐ordered. Since there is no graph H which is (δ(H)+2)‐ordered, the result is best possible. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 171–180, 2006  相似文献   

5.
Bondy conjectured a common generalization of various results in hamiltonian graph theory concerning Hamilton and dominating cycles by introducing a notion of PDλ-cycles (cycles that dominate all paths of lengths at least λ). We show that the minimum degree version of Bondy’s conjecture is true (along with the reverse version) if PDλ-cycles are replaced by CDλ-cycles (cycles that dominate all cycles of lengths at least λ). Fraisse proved a minimum degree generalization including a theorem of Nash-Williams for Hamilton cycles as a special case. We present the reverse version of this result including a theorem of Voss and Zuluaga as a special case. Two earlier less known results (due to the author) are crucial for the proofs of these results. All results are sharp in all respects. A number of possible similar generalizations are conjectured as well.  相似文献   

6.
For a simple graph G let NG(u) be the (open) neighborhood of vertex uV(G). Then G is neighborhood anti-Sperner (NAS) if for every u there is a vV(G)?{u} with NG(u)⊆NG(v). And a graph H is neighborhood distinct (ND) if every neighborhood is distinct, i.e., if NH(u)≠NH(v) when uv, for all u and vV(H).In Porter and Yucas [T.D. Porter, J.L. Yucas. Graphs whose vertex-neighborhoods are anti-sperner, Bulletin of the Institute of Combinatorics and its Applications 44 (2005) 69-77] a characterization of regular NAS graphs was given: ‘each regular NAS graph can be obtained from a host graph by replacing vertices by null graphs of appropriate sizes, and then joining these null graphs in a prescribed manner’. We extend this characterization to all NAS graphs, and give algorithms to construct all NAS graphs from host ND graphs. Then we find and classify all connected r-regular NAS graphs for r=0,1,…,6.  相似文献   

7.
In this paper, k + 1 real numbers c1, c2, ?, ck+1 are found such that the following condition is sufficient for a k-connected graph of order n to be hamiltonian: for each independent vertex set of k + 1 vertices in G. where Si = {v ? V:|N(v) ∩ S| = i} for 0 ≦ i ≦ k + 1. Such a set of k + 1 numbers is called an Hk-sequence. A sufficient condition for the existence of Hk-sequences is obtained that generalizes many known results involving sum of degrees, neighborhood unions, and/or neighborhood intersections.  相似文献   

8.
Dirac proved that a graph G is hamiltonian if the minimum degree , where n is the order of G. Let G be a graph and . The neighborhood of A is for some . For any positive integer k, we show that every (2k ? 1)‐connected graph of order n ≥ 16k3 is hamiltonian if |N(A)| ≥ n/2 for every independent vertex set A of k vertices. The result contains a few known results as special cases. The case of k = 1 is the classic result of Dirac when n is large and the case of k = 2 is a result of Broersma, Van den Heuvel, and Veldman when n is large. For general k, this result improves a result of Chen and Liu. The lower bound 2k ? 1 on connectivity is best possible in general while the lower bound 16k3 for n is conjectured to be unnecessary. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 83–100, 2006  相似文献   

9.
A series of results are obtained on the stability of the independence number of random subgraphs of distance graphs, which are natural generalizations of the classical Kneser graphs.  相似文献   

10.
A graph is called a 1-triangle if, for its every maximal independent set I, every edge of this graph with both endvertices not belonging to I is contained exactly in one triangle with a vertex of I. We obtain a characterization of 1-triangle graphs which implies a polynomial time recognition algorithm. Computational complexity is establishedwithin the class of 1-triangle graphs for a range of graph-theoretical parameters related to independence and domination. In particular, NP-completeness is established for the minimum perfect neighborhood set problem in the class of all graphs.  相似文献   

11.
For any two points p and q in the Euclidean plane, define LUNpq = { v | vR2, dpv < dpq and dqv < dpq}, where duv is the Euclidean distance between two points u and v . Given a set of points V in the plane, let LUNpq(V) = V ∩ LUNpq. Toussaint defined the relative neighborhood graph of V, denoted by RNG(V) or simply RNG, to be the undirected graph with vertices V such that for each pair p,qV, (p,q) is an edge of RNG(V) if and only if LUNpq (V) = ?. The relative neighborhood graph has several applications in pattern recognition that have been studied by Toussaint. We shall generalize the idea of RNG to define the k-relative neighborhood graph of V, denoted by kRNG(V) or simply kRNG, to be the undirected graph with vertices V such that for each pair p,qV, (p,q) is an edge of kRNG(V) if and only if | LUNpq(V) | < k, for some fixed positive number k. It can be shown that the number of edges of a kRNG is less than O(kn). Also, a kRNG can be constructed in O(kn2) time. Let Ec = {epq| pV and qV}. Then Gc = (V,Ec) is a complete graph. For any subset F of Ec, define the maximum distance of F as maxepqFdpq. A Euclidean bottleneck Hamiltonian cycle is a Hamiltonian cycle in graph Gc whose maximum distance is the minimum among all Hamiltonian cycles in graph Gc. We shall prove that there exists a Euclidean bottleneck Hamiltonian cycle which is a subgraph of 20RNG(V). Hence, 20RNGs are Hamiltonian.  相似文献   

12.
13.
设G=(V,E)为简单图,δ为图G的最小度,1987年Faudree等人给出NC=min{|N(x)∪N(y)‖x,y∈V(G),xy∈N(G)},有关文献曾研究3连通的H连通图,本文进一步得到:若G是n阶2连通图,且NC≥n-δ,则G除几个图外均是H连通图,从而,完成了邻并条件的H连通图问题。  相似文献   

14.
《Discrete Mathematics》2007,307(17-18):2200-2208
An odd neighborhood transversal of a graph is a set of its vertices that intersects the set of neighbors of each of its vertices in an odd number of elements. In the case of grid graphs this odd number will be either one or three. We characterize those grid graphs that have odd neighborhood transversals.  相似文献   

15.
In the set of bicolored trees with given numbers of black and of white vertices we describe those for which the largest eigenvalue is extremal (maximal or minimal). The results are first obtained by the automated system AutoGraphiX, developed in GERAD (Montreal), and verified afterwards by theoretical means.  相似文献   

16.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

17.
Let G be a simple graph with n vertices. For any , let , and , and and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.   相似文献   

18.
In the set of bicolored trees with given numbers of black and of white vertices we describe those for which the largest eigenvalue is extremal (maximal or minimal). The results are first obtained by the automated system AutoGraphiX, developed in GERAD (Montreal), and verified afterwards by theoretical means.  相似文献   

19.
20.
For a graph H, let σt(H)=min{Σi=1tdH(vi)|{v1,v2,,vt}is an independent set in H} and let Ut(H)=min{|?i=1tNH(vi)||{v1,v2,?,vt}is an independent set in H}. We show that for a given number ? and given integers pt>0, k{2,3} and N=N(p,?), if H is a k-connected claw-free graph of order n>N with δ(H)3 and its Ryjác?ek’s closure cl(H)=L(G), and if dt(H)t(n+?)p where dt(H){σt(H),Ut(H)}, then either H is Hamiltonian or G, the preimage of L(G), can be contracted to a k-edge-connected K3-free graph of order at most max{4p?5,2p+1} and without spanning closed trails. As applications, we prove the following for such graphs H of order n with n sufficiently large:(i) If k=2, δ(H)3, and for a given t (1t4) dt(H)tn4, then either H is Hamiltonian or cl(H)=L(G) where G is a graph obtained from K2,3 by replacing each of the degree 2 vertices by a K1,s (s1). When t=4 and dt(H)=σ4(H), this proves a conjecture in Frydrych (2001).(ii) If k=3, δ(H)24, and for a given t (1t10) dt(H)>t(n+5)10, then H is Hamiltonian. These bounds on dt(H) in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σt and Ut for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max{4p?5,2p+1} are fixed for given p, improvements to (i) or (ii) by increasing the value of p are possible with the help of a computer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号