首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
《光学技术》2021,47(1):56-61
为提高传统跌倒检测系统的识别准确率,降低识别时间,提出了一种新型跌倒检测模型。以Kinect V2深度视觉传感器获取的骨骼节点为样本数据源,由改进型K-means算法计算聚类中心点,并在此基础上提取跌倒检测特征数据。将特征数据重构成5×5训练样本数据后,输入所设计的卷积神经网络模型进行训练学习,得到优化的跌倒检测模型参数。实验表明,所设计的新型检测模型相对于传统检测跌倒算法具有更高的识别准确率和更快的运算速度,保证了系统的实时性和鲁棒性要求。  相似文献   

2.
李萍  宋波  毛捷  廉国选 《应用声学》2019,38(3):458-464
深度学习(Deep Learning)是目前最强大的机器学习算法之一,其中卷积神经网络(Convolutional Neural Network, CNN)模型具有自动学习特征的能力,在图像处理领域较其他深度学习模型有较大的性能优势。本文先简述了深度学习的发展史,然后综述了深度学习在超声检测缺陷识别中的应用与发展,从早期浅层神经网络到现在深度学习的应用现状,并借鉴医学影像识别和射线图像识别领域的方法,分析了卷积神经网络对超声图像缺陷识别的适用性。最后,探讨归纳了目前在超声检测图像识别中使用CNN存在的一些问题,及其主要应对策略的研究方向。  相似文献   

3.
基于卷积神经网络的深度学习算法的检测识别精度已远远超过了传统模式识别算法,但卷积神经网络中的卷积、非线性激活等运算,需要巨大的算力才能高效率实现,这使得很多深度学习算法模型难以在算力限制的嵌入式平台上进行部署。以目标检测算法YOLO-V3为例,针对网络的不同层设计了对应的FPGA实现方法,并且特别针对卷积层设计了分片分块并行运算的运算单元,最终在FPGA中实现了一种目标检测硬件加速器。该加速器可充分利用FPGA的硬件计算资源,其整体平均性能为192.229 GOP/s。通过实验对比,证明该目标检测硬件加速器可以为嵌入式红外目标识别系统提供一种能效高、识别精度高的解决方案。  相似文献   

4.
为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红外小目标的显著性特征进一步抑制虚警;最后采用自适应阈值法分离出小目标.网络结构中通过引入多个下采样层降低计算量并增大感受野;通过引入多尺度特征提升背景抑制能力;通过引入注意力机制提升模型训练效果.在真实红外图像上的测试表明,本文算法在检测率、虚警率和运算时间等方面都优于典型红外小目标检测算法,适合进行复杂背景下的红外小目标检测.  相似文献   

5.
6.
7.
汪璐 《物理》2017,46(9):597-605
深度学习是一类通过多层信息抽象来学习复杂数据内在表示关系的机器学习算法。近年来,深度学习算法在物体识别和定位、语音识别等人工智能领域,取得了飞跃性进展。文章将首先介绍深度学习算法的基本原理及其在高能物理计算中应用的主要动机。然后结合实例综述卷积神经网络、递归神经网络和对抗生成网络等深度学习算法模型的应用。最后,文章将介绍深度学习与现有高能物理计算环境结合的现状、问题及一些思考。  相似文献   

8.
快速磁共振成像是磁共振研究领域重要的课题之一.随着大数据和深度学习的兴起,神经网络成为快速磁共振技术的重要方法.然而网络性能表现和网络参数量之间较难取得平衡,且对于多通道数据重建的并行成像问题,相关研究较少.本文构建了一种深度递归级联卷积神经网络结构,用于处理并行成像问题.这种网络结构在减少网络参数量的同时,能够尽可能地提高网络的表达能力,提高网络重建的精确度.实验结果表明,相较于传统并行成像方法,通过训练好的神经网络对欠采样磁共振数据进行重建,可以得到更准确的重建结果,且重建时间大大缩短.  相似文献   

9.
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。  相似文献   

10.
红外光谱分析在自然科学、工程技术等诸多领域发挥着重要作用.随着计算机和人工智能技术的不断发展,对红外/近红外光谱分析提出了更高的要求.深度学习以人工神经网络为架构,通过对数据进行分层特征提取完成特征/表征学习,在解析数据细节特征方面具有独特的优势,在计算机视觉、语音识别、疾病诊断等多领域得到成功应用.尽管深度学习在图像...  相似文献   

11.
Gabbard et al.have demonstrated that convolutional neural networks can achieve the sensitivity of matched filtering in the recognization of the gravitational-wave signals with high efficiency[Phys.Rev.Lett.120,141103(2018)].In this work we show that their model can be optimized for better accuracy.The convolutional neural networks typically have alternating convolutional layers and max pooling layers,followed by a small number of fully connected layers.We increase the stride in the max pooling layer by 1,followed by a dropout layer to alleviate overfitting in the original model.We find that these optimizations can effectively increase the area under the receiver operating characteristic curve for various tests on the same dataset.  相似文献   

12.
樊玉琦  温鹏飞  许雄  郭丹  刘瑜岚 《强激光与粒子束》2019,31(9):093203-1-093203-6
现代战争中雷达信号日趋复杂,如何快速准确地从种类繁多、数据量庞大的雷达检测数据中,获取目标航迹的类别信息,为战场指挥提供准确有效的信息是当前急需解决的难题。传统基于人的经验认知的雷达目标航迹识别方法已经无法有效应对瞬息万变的战场和海量数据。根据实际雷达数据特点,提出了使用对数的雷达航迹预处理方法,并构建了基于卷积神经网络的深度学习模型,实现了对雷达对抗中的目标航迹的识别与检测。基于模拟生成的雷达目标航迹数据对提出的数据预处理方法和构建的模型进行测试;实验表明,所提出的方法能很好地实现对目标航迹的检测与识别。  相似文献   

13.
韩鹏程  燕群  彭涛  宁方立 《应用声学》2022,41(4):602-609
为了克服现有气体泄漏检测方法的不足,提出一种基于卷积神经网络的气体泄漏超声信号识别方法。在设计卷积神经网络网络结构时,通过多次预训练确定网络层数、卷积核数目和尺寸、全连接层神经元数目。同时,选择Inception模块平衡网络宽度和深度,防止过拟合的同时提高网络对尺度的适应性。通过输气管道泄漏实验平台模拟工况中常见的阀门泄漏和垫片泄漏,利用短时傅里叶变换进行时频图表征,在此基础上,建立二分类模型和不同泄漏类型的三分类模型。结果表明,相比二分类模型,不同泄漏类型的三分类模型识别准确率有所降低,添加Inception模块可以有效提高三分类模型的性能。  相似文献   

14.
光伏电池片中的缺陷会影响整个光伏系统使用寿命及发电效率。针对现有电池片自动检测中尺寸弱小缺陷漏检率高的问题,建立了一种特征增强型轻量化卷积神经网络模型。针对性地设计了特征增强提取模块,提高了弱边界的提取能力,同时根据多尺度识别原理,增加了小目标预测层,实现了多尺度特征预测。在实验测试中,该模型平均精度均值(mAP)达到87.55%,比传统模型提高了6.78个百分点,同时检测速度达到40帧/s,满足精准性与实时性的检测要求。  相似文献   

15.
探测波前相位信息是实现自适应光学波前补偿的关键,使用卷积神经网络(CNN)代替波前传感器进行波前重构,系统简单易于实现,同时重构过程不依赖迭代运算,快速实时。为准确提取远场中的波前特征,CNN需要事先使用大量样本进行训练。研究中根据4~30阶大气湍流泽尼克像差系数与其远场强度的对应关系,仿真制作样本数据集,训练CNN从输入的一帧远场图像中预测出畸变波前的泽尼克像差系数,重构原始波前。验证结果表明,该方法能快速实时地还原出波前相位信息,重构波前较原始波前具有极高的波面吻合度和较小的残差剩余量,有望实现实际自适应光学系统中的闭环校正。  相似文献   

16.
盆式绝缘子是GIS的关键绝缘器件,它与两侧气室法兰通过螺栓进行紧固连接,当螺栓松动时会导致盆式绝缘子应力分布不均,严重时会引起绝缘子破裂,从而影响GIS运行的安全性和可靠性。文章搭建了盆式绝缘子螺栓松动超声波检测系统,以获取不同螺栓不同工况下的超声信号,基于卷积神经网络对超声信号进行特征提取,并且与BP神经网络的训练结果进行对比分析。实验结果表明,卷积神经网络可以自动提取GIS盆式绝缘子螺栓松动特征量,对十种螺栓松动工况的识别准确率达到100%,相比于BP神经网络具有较高的识别准确率,该方法可以直接用于盆式绝缘子螺栓松动检测。  相似文献   

17.
该文提出一种基于卷积神经网络直接对阵列超声检测原始信号进行缺陷类型识别的方法,该方法无需对超声回波原始信号进行特征提取.文章研究对比了不同卷积神经网络及其优化的识别性能.首先采用超声相控阵系统对不同试块上的平底孔、球底孔、通孔三种缺陷进行超声检测,然后利用LeNet5、VGG16和ResNet三种卷积神经网络对一维和二...  相似文献   

18.
次声事件的分类识别方法应用广泛,传统分类方法在很多方面进行了尝试,但由于次声信号具备非线性的特点,致使分类难度较大,分类精度不高,这对次声事件的分类工作提出了挑战.针对次声事件中的化学爆炸与天然地震信号分类问题,文章构建了一种改进的深度卷积神经网络分类模型用于实现两类次声信号的分类.论文采用"全面禁止核试验条约组织"官...  相似文献   

19.
相位恢复法利用光波传输中某一(或某些)截面上的光强分布来传感系统波前,其结构简单,不易受震动及环境干扰,被广泛应用于光学遥感和像差检测等领域.传统相位恢复法采用迭代计算,很难满足实时性要求,且在一定程度上依赖于迭代转换或迭代优化初值.为克服上述问题,本文提出了一种基于卷积神经网络的相位恢复方法,该方法采用基于小波变换的图像融合技术对焦面和离焦面图像进行融合处理,可在不损失图像信息的同时简化卷积神经网络的输入.网络模型训练完成后可依据输入的融合图像直接输出表征波前相位的4-9阶Zernike系数,且波前传感精度均方根(root-mean-square,RMS)可达0.015λ,λ=632.8 nm.研究了噪声、离焦量误差和图像采样分辨率等因素对波前传感精度的影响,验证了该方法对噪声具有一定鲁棒性,相对离焦量误差在7.5%内时,波前传感精度RMS仍可达0.05λ,且随着图像采样分辨率的提升,波前传感精度有所改善,但训练时间成本随之增加.此外,分析了实际应用中,当系统像差阶数与网络训练阶数略有差异时,本方法所能实现的传感精度,并给出了解决方案.  相似文献   

20.
朱艳菊  谢树果  李元豪  张娴 《强激光与粒子束》2019,31(10):103210-1-103210-5
在利用抛物反射面对电磁干扰源成像过程中,由于系统衍射受限及成像频带较宽,导致干扰源成像模糊,分辨率低,难以分辨,不同频率不同区域干扰源所成图像分辨率不同,采用已有超分辨算法难以提高分辨率。为了实现宽带电磁图像的盲复原, 应用卷积神经网络的方法。网络训练是直接输入模糊图像,不假设任何特定的模糊和噪声模型情况下,重建出高质量图像。实验和仿真结果证明了卷积神经网络盲恢复方法在宽频带不同成像区域下表现了优于其他盲恢复算法的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号