首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly filled elastomers present strong nonlinear mechanical behavior. This study proposes a biaxial dynamic mechanical analysis (DMA) experiment to study the prestrain induced nonlinearity. This phenomenon has already been observed for uniaxial tests, revealing an increase of the amplitude of the dynamic modulus with prestrain. The novelty proposed here is to investigate the problem under biaxial conditions. For this purpose, a specific apparatus and an appropriate specimen have been designed. Strains and stresses have been measured using localization formulae and compared with measurements from digital image correlation and finite element computations. Biaxial DMA tests were performed on a propellant specimen, for different values of biaxial prestrain. The material is a highly filled elastomer with an important influence of the prestrain on the global viscoelastic behavior. The results exhibit increasing amplitude of the complex modulus with increasing prestrain, as in uniaxial experiments. Moreover, the dependence can be characterized using the second invariant of the prestrain, and the viscoelastic behavior is modeled using a closed-form spectrum of relaxation times.  相似文献   

2.
冷冻/解冻制备的聚乙烯醇水凝胶的结构和流变性研究   总被引:3,自引:0,他引:3  
研究了冷冻/解冻法制备的不同浓度(5wt%~25wt%)聚乙烯醇(PVA)水凝胶的结构和流变行为之间的关系.由XRD确定了凝胶中PVA的结晶度和晶粒尺寸.用应力流变仪研究了凝胶的流变行为,包括动态模量和蠕变等.在频率为1Hz和低应力的条件下,测量了凝胶的储能模量和损耗模量.在该试验条件下,PVA水凝胶的形变是完全可以回复的.低频率区和低应变区的储能模量随浓度增加而变大,但当浓度超过20wt%时,储能模量增加速率明显降低.由PVA水凝胶在1Hz时的储能模量和结晶度的数据,理论分析得到了形成PVA水凝胶的最低PVA浓度和最小结晶度.当PVA浓度低于15wt%时,储能模量主要由PVA的微晶控制,分子链间的氢键影响很小.通过低应变区储能模量的数值计算出了凝胶网孔尺寸的结构参数.同时对不同温度下PVA水凝胶的储能模量数据进行了标度分析.PVA水凝胶的蠕变行为显示,随浓度提高,凝胶的蠕变黏弹性由线性向非线性转变.  相似文献   

3.
Proteins can aggregate as amyloid fibrils under denaturing and destabilizing conditions such as low pH (2) and high temperature (90 °C). Fibrils of β-lactoglobulin are surface active and form adsorption layers at fluid-fluid interfaces. In this study, β-lactoglobulin fibrils were adsorbed at the oil-water interface at pH 2. A shear rheometer with a bicone geometry set up was modified to allow subphase exchange without disrupting the interface, enabling the investigation of rheological properties after adsorption of the fibrils, as a function of time, different pH, and ionic strength conditions. It is shown that an increase in pH (2 to 6) leads to an increase of both the interfacial storage and loss moduli. At the isoelectric point (pH 5-6) of β-lactoglobulin fibrils, the maximum storage and loss moduli are reached. Beyond the isoelectric point, by further increasing the pH, a decrease in viscoelastic properties can be observed. Amplitude sweeps at different pH reveal a weak strain overshoot around the isoelectric point. With increasing ionic strength, the moduli increase without a strain overshoot. The method developed in this study allows in situ subphase exchange during interfacial rheological measurements and the investigation of interfacial ordering.  相似文献   

4.
The dynamic bulk modulus of elasticity has been measured for 14 different rubbery elastomers: three natural rubbers, five neoprenes, three polyurethanes, and one each of butyl, nitrile, and butadiene types. The measurements ranged in temperature from ?10 to +40°C, at frequencies from 5 to 3000 Hz, but mostly in the range 100–1000 Hz, at 2.5 MPa pressure. Values of the real (storage) part of the modulus fell within 35% of the mean value of 2.9 GPa for all elastomers, whereas loss moduli were a few percent of the storage moduli. Master curves were obtained for two neoprenes, a polyurethane, and a butyl rubber. These were fitted by hyperbolic functions with four adjustable parameters. Effects of room-temperature aging in artificial sea water were also studied. Aging versus time profiles fell into two distinct forms. Natural rubbers were least stable, neoprenes were intermediate, and urethanes proved most stable in bulk modulus.  相似文献   

5.
In this paper, core-shell structured poly methyl methacrylate (PMMA) coated carbonyl iron (CI) particles were prepared to study the influence of particle coating on the dynamic properties of magnetorheological elastomers (MREs). The CI-PMMA composite particles were encapsulated via an emulsion polymerization method. Two MRE samples were prepared with CI-PMMA composite particles and CI particles, respectively. Their microstructure was observed by using a scanning electron microscope (SEM). Dynamic properties of these two samples under various strain and magnetic fields were measured with a dynamic mechanical analyzer (DMA). The experimental results indicate that the MRE sample with CI-PMMA composite particles has larger storage modulus, smaller loss factor and smaller Payne effect than that of the sample with only CI particles. The analysis indicates that the use of CI-PMMA particles would increase the bond strength between particles and matrix. These experimental results were also verified by the SEM images.  相似文献   

6.
The method of torsion oscillations is used to measure the dynamic modulus of elasticity of magnetically controlled elastomers that comprise silicone rubber and carbonyl iron in the low-frequency (up to 100 Hz) range. The samples are synthesized in the absence of a magnetic field; therefore, they have an isotropic structure. In the measurements, a constant magnetic field (up to 24 kA/m) is superimposed along the axis of forced torsion oscillations of the sample. A simple model of the rheological behavior of magnetically controlled elastomers is proposed; the problem of torsion oscillations of a cylindrical sample is solved. From the comparison with the experiment for the materials under study, we determine the coefficients of the theoretical model and the corrections to them, which are made because of variations in the rheology of magnetically controlled elastomers under the influence of a magnetic field. The derived relations make it possible to exclude artifacts and to adequately describe dependences of the storage and loss moduli on the frequency of mechanical loading and the strength of the applied magnetic field.  相似文献   

7.
The paper presents experimental research and numerical modeling of dynamic properties of magnetorheological elastomers (MREs). Isotropic and anisotropic MREs have been prepared based on silicone matrix filled by micro-sized carbonyl iron particles. Dynamic properties of the isotropic and anisotropic MREs were determined using double-lap shear test under harmonic loading in the displacement control mode. Effects of excitation frequency, strain amplitude, and magnetic field intensity on the dynamic properties of the MREs were examined. Dynamic moduli of the MREs decreased with increasing the strain amplitude of applied harmonic load. The dynamic moduli and damping properties of the MREs increased with increasing the frequency and magnetic flux density. The anisotropic MREs showed higher dynamic moduli and magnetorheological (MR) effect than those of the isotropic ones. The MR effect of the MREs increased with the rise of the magnetic flux density. The dependence of dynamic moduli and loss factor on the frequency and magnetic flux density was numerically studied using four-parameter fractional derivative viscoelastic model. The model was fitted well to experimental data for both isotropic and anisotropic MREs. The fitting of dynamic moduli and loss factor for the isotropic and anisotropic MREs is in good agreement with experimental results.  相似文献   

8.
Small-amplitude dynamic measurements of aqueous starch polysaccharide solutions are performed by a Bohlin controlled-stress rheometer with air bearing. Three classes of starch polysaccharides–native starches, fractions of starches and hydrolysed starches–are compared in their molecular composition and rheological properties during and after the gelation process. Viscoelastic properties of solutions and gels are recorded in dependence on temperature and time, yielding storage and loss moduli during and after sol-gel transition. Hot concentrated aqueous solutions are cooled down from 90 °C to 5 °C at a rate of 1 °C/min. Measurements are carried out at 0,1 Hz and 5% strain amplitude deformation. The typical course of the moduli of gelling starch polysaccharide solutions shows a liquid-like behavior (G” > G') in the upper temperature level between 60 and 90 °C, a jumpwise increase with ensuing intersection of G' and G” below 60 °C and a solid-like behavior (G' > G”) at lower temperatures with a slightly in time growing storage modulus. Storage and loss moduli depend on molecular composition and concentration of the substance. The process of starch polysaccharide aggregation is discussed with regard to theories of physical gelation by Ross-Murphy and Winter.  相似文献   

9.
One result of the discovery of homogeneous metallocene stereospecific catalysts is the ability to prepare polypropylene in a stereoblock form in which the isotactic stretches give crystallites acting as temporary crosslinks in an elastomeric network structure. The fact that these elastomers are thermoplastic and thus reprocessible increases the importance of establishing their structure-property relationships. In this report, the dependence of their physical properties on isotactic pentad content, molecular weight, and possible strain-induced crystallization are described. Thermal evaluations and mechanical tests of these materials under oscillatory strain, continuous extension and near-equilibrium uniaxial and biaxial elongation showed that they were multiphase, tough elastomeric materials. Their moduli and tensile strengths increased with increase in % isotactic pentad content and with increase in molecular weight. Equilibrium stress-strain measurements showed the occurrence of strain-induced crystallization in uniaxial, but not in biaxial, deformations.  相似文献   

10.
We report the interfacial properties of monolayers of Ag nanoparticles 10-50 nm in diameter formed at the toluene-water interface under steady as well as oscillatory shear. Strain amplitude sweep measurements carried out on the film reveal a shear thickening peak in the loss moduli (G") at large amplitudes followed by a power law decay of the storage (G') and loss moduli with exponents in the ratio 2:1. In the frequency sweep measurements at low frequencies, the storage modulus remains nearly independent of the angular frequency, whereas G" reveals a power law dependence with a negative slope, a behavior reminiscent of soft glassy systems. Under steady shear, a finite yield stress is observed in the limit of shear rate .gamma going to zero. However, for .gamma > 1 s-1, the shear stress increases gradually. In addition, a significant deviation from the Cox-Merz rule confirms that the monolayer of Ag nanoparticles at the toluene-water interface forms a soft two-dimensional colloidal glass.  相似文献   

11.
The linear dynamic moduli of a PαMSAN/PMMA blend have been measured during spinodal decomposition and the subsequent coarsening of the co‐continuous morphology. The feasibility of probing this morphology development by rheological measurements has been investigated. During phase separation, the storage modulus shows a power law behaviour at low frequency and its value decreases as time proceeds. However, effects of the dynamic measurement on the morphology development have been observed, even for strain amplitudes as low as 0.01. This effect of oscillatory shear on the coarsening of a co‐continuous structure is consistent with the predictions of the Doi‐Ohta theory.  相似文献   

12.
Prestrain provides high actuation performance in dielectric elastomers (DEs) but increases the bulk, mass, and fatigue of the resulting actuators. Based on our experiments on prestrain‐locked interpenetrating polymer films and the model developed by Zhao and Suo, materials with a certain stress–strain relationship should be capable of high strain without prestrain by suppressing electromechanical instability (EMI). Here, we report the synthesis of an acrylic elastomer capable of achieving high actuation performance without prestrain. DE films were directly fabricated by ultraviolet curing of precursors comprising a mixture of acrylate comonomers. Varying the amount of crosslinker comonomer in the precursor allowed us to tune the stress–strain relationship and completely suppress EMI while maintaining high strain performance. Addition of plasticizing agents increased strain sensitivity. The result is a new DE, synthesized from scratch, capable of high actuation strain (>100%), high energy density (>1 J g?1), and good temperature and frequency response without requiring prestretching. The material can be fabricated using conventional coating techniques and the process can allow for high volume throughput of stacked DE actuators. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

13.
A series of ternary systems composed of cellulose acetate (CA), N,N-dimethylacetamide (DMA), and water were prepared by varying the mixing temperature and order of component addition with increasing water content. The viscoelastic properties of the resulting ternary systems were measured using steady state and dynamic rheology. The CA/DMA/H2O mixture formed physical gels at 17.5 and 19 wt% water concentrations after heating to 50 and 70/90 °C, respectively. Gel formation was characterized by the loss of a Newtonian plateau in the steady state as well as the transition of the elastic (G′) modulus becoming greater than the viscous (G″) modulus in the dynamic state. The order of component addition dramatically affected phase behaviour. Adding CA to the DMA/water solution resulted in lower moduli gels and the formation of a two-phase phase separated system at high nonsolvent contents in those prepared at low temperatures. The kinetics of phase separation was improved by subjecting the gels to a thermal treatment of 90 °C. In this case, the gels previously heated at 50 and 70° C showed a one-phase phase separated gel with higher viscous and elastic moduli.  相似文献   

14.
Long-term predictions of material properties such as stiffness and creep resistance are important in many engineering applications and require high reliability and accuracy. This is especially true for polymer materials and their composites as their viscoelastic nature results in time-dependent material behaviour and any measurement uncertainties or errors amplify in long-term predictions. To measure this behaviour at smallest loadings, Dynamic Mechanical Analysis (DMA) is frequently declared as an ideal method. However, the measurement accuracy and repeatability of this method is strongly influenced by (i) the testing fixture and corresponding loading mode, (ii) the sample preparation and (iii) the plotting scale to interpret the test results. In this study, relevant experimental parameters were found for DMA and a proper procedure was designed, which was then applied to measure the viscoelastic behaviour of a highly temperature and creep resistant thermoplastic polymer (polyethersulfone) and of a highly graphite filled polypropylene composite. In combination with finite element simulations and in-situ strain measurements by digital image correlation (DIC), the main influences on measurement accuracy of three-point-bending DMA were identified and subsequently used to determine measurement guidelines. Using these guidelines, DMA measurements allow quantitative determination of the viscoelastic response for rigid polymer and composite materials.  相似文献   

15.
The interfacial rheology of sorbitan tristearate monolayers formed at the liquid/air interface reveal a distinct nonlinear viscoelastic behavior under oscillatory shear usually observed in many 3D metastable complex fluids with large structural relaxation times. At large strain amplitudes (gamma), the storage modulus (G') decreases monotonically whereas the loss modulus (G') exhibits a peak above a critical strain amplitude before it decreases at higher strain amplitudes. The power law decay exponents of G' and G' are in the ratio 2:1. The peak in G' is absent at high temperatures and low concentration of sorbitan tristearate. Strain-rate frequency sweep measurements on the monolayers do indicate a strain-rate dependence on the structural relaxation time. The present study on sorbitan tristearate monolayers clearly indicates that the nonlinear viscoelastic behavior in 2D Langmuir monolayers is more general and exhibits many of the features observed in 3D complex fluids.  相似文献   

16.
Xu D  Craig SL 《Macromolecules》2011,44(18):7478-7488
The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (k(d) ~ 1450 s(-1)), whereas strain hardening is observed for samples with slower cross-linkers (k(d) ~ 17 s(-1)). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system.  相似文献   

17.
Nanostructured wollastonite was synthesized by a sol–gel method and then used as a filler for polypropylene (PP). The obtained wollastonite particles were investigated using XRD, TEM and FTIR techniques. Non-isothermal crystallization measurements revealed that the wollastonite filler reduced the crystallization temperature of the matrix. TGA analyses showed improved thermal stability of the nanocomposite with respect to that of the pure polypropylene. From the DMA tan δ curves, it was concluded that the introduction of the filler into the PP matrix induced a slight shift of the β-transition (glass transition) towards higher temperature. The measurements of storage moduli showed that the nanocomposites have higher stiffness than the pure PP over the whole range of test temperature. An increase in stiffness was also confirmed by tensile measurements.  相似文献   

18.
Suspensions of lignite in a solution of a high molecular weight carboxymethylcellulose show peculiar rheological behaviour. Unless the lignite concentration is sufficiently high, apparent viscosity and viscoelastic moduli of the suspension are lower than those of the pure solution. This effect is not suppressed by changing pH and seems to be common for low-concentrated suspensions in solutions of high molecular weight (bio)polymer. It is explained by specific structuring of the suspensions. Lignite particles at lower concentration separate long cellulose chains and facilitate their movement under shear flow. The particles loosen inter-chain contacts, disturb and release elastic gel-like structure formed by the long cellulose chains, which results in the low strain oscillatory deformation, the decrease in the moduli and the increase in the loss angle. If the amount of lignite particles is sufficiently high, suspension stiffening occurs as usual. No such effect was observed for suspensions prepared from the low molecular weight derivative. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
在动态应变条件下, SiO2/PEG200(聚乙二醇, 平均分子量为200)分散体系出现了剪切增稠现象. 剪切流变实验表明, 在两种情况下都出现了剪切增稠: 一种是在不同的恒定频率下应变扫描, 在临界应力γc出现的剪切增稠; 另一种是恒定的应变(γ0=500%)条件下频率扫描, 在临界频率棕c抑10 rad·s-1出现的剪切增稠. 在不同的恒定频率应变扫描条件下, 实验研究了储能模量(G’)和耗能模量(G’’)与应变的关系, 同时初步探讨了应变与不同恒定频率的函数关系. 在线性粘弹性区域内, G’和G’’满足G’∝ω0.57和G’’∝ω0.7指数关系. 在恒定的应变条件下, 发现模量和复数粘度与扫描频率具有强烈的依赖关系, 这些现象可以定性地通过“粒子簇”理论来解释.“粒子簇”理论认为这种剪切增稠的发生是由于形成了亚稳定、流动所导致的“粒子簇”, 使得粘度上升.  相似文献   

20.
The work reported in the preceding article in this series is extended by consideration of polysiloxane–ceramic composites based on atactic poly(methylphenylsiloxane) (PMPS) elastomers instead of poly(dimethylsiloxane). The former is noncrystallizable because of its stereochemically irregular structure, while the latter is crystallizable. In addition, some composites were prepared by the in situ precipitation of titania instead of silica. The resulting materials were characterized using differential scanning calorimetry, equilibrium stress–strain measurements in elongation, small-angle neutron scattering, and transmission electron microscopy. The moduli of the PMPS elastomers were found to increase significantly with increase in amount of either type of filler, with reinforcing upturns at high elongation in the case of the silica. Because the PMPS elastomers were amorphous, it is obvious that strain-induced crystallization is not required for these upturns in modulus. Titania did not give as good reinforcement as did silica, at least in the case of PMPS. Differences in interactions between the polymer and the two fillers are obviously important in this regard, but differences in particle morphology probably also contribute. Specifically, the titania “particles” were significantly larger than the silica particles when observed in TEM, and appeared to be much more porous. The actual domain size as measured by scattering, however, was only approximately 5% larger. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1191–1200, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号