首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let Ω denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graph GΩ is said to be a forcing face of G if the subgraph of G obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649-668]. We prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with n?4 and n?k?0, there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof for a recent result that a connected cubic plane bipartite graph G has at least two disjoint M-resonant faces for any perfect matching M of G, which is a main theorem in the paper [S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane graphs, Discrete Math. 262 (2003) 27-36]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed by Zhang et al. [Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415; Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291-311], we characterize the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by subdivisions.  相似文献   

2.
3.
We consider a partitioning problem, defined for bipartite and 2-connected plane graphs, where each node should be covered exactly once by either an edge or by a cycle surrounding a face. The objective is to maximize the number of face boundaries in the partition. This problem arises in mathematical chemistry in the computation of the Clar number of hexagonal systems. In this paper we establish that a certain minimum weight covering problem of faces by cuts is a strong dual of the partitioning problem. Our proof relies on network flow and linear programming duality arguments, and settles a conjecture formulated by Hansen and Zheng in the context of hexagonal systems [P. Hansen, M. Zheng, Upper Bounds for the Clar Number of Benzenoid Hydrocarbons, Journal of the Chemical Society, Faraday Transactions 88 (1992) 1621-1625].  相似文献   

4.
It is proved that the vertices of a cubic bipartite plane graph can be colored with four colors such that each face meets all four colors. This is tight, since any such graph contains at least six faces of size four.  相似文献   

5.
A face of an edge‐colored plane graph is called rainbow if the number of colors used on its edges is equal to its size. The maximum number of colors used in an edge coloring of a connected plane graph Gwith no rainbow face is called the edge‐rainbowness of G. In this paper we prove that the edge‐rainbowness of Gequals the maximum number of edges of a connected bridge face factor H of G, where a bridge face factor H of a plane graph Gis a spanning subgraph H of Gin which every face is incident with a bridge and the interior of any one face fF(G) is a subset of the interior of some face f′∈F(H). We also show upper and lower bounds on the edge‐rainbowness of graphs based on edge connectivity, girth of the dual graphs, and other basic graph invariants. Moreover, we present infinite classes of graphs where these equalities are attained. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 84–99, 2009  相似文献   

6.
Let G be a plane graph with maximum face size Δ. If all faces of G with size four or more are vertex disjoint, then G has a cyclic coloring with Δ+1 colors, i.e., a coloring such that all vertices incident with the same face receive distinct colors.  相似文献   

7.
It is proved that a bipartite 2-connected plane graph in which the common boundary of adjacent faces is a simple curve is 1-cycle resonant if and only if the outer face of G is alternating and each inner vertex has degree two. This extends a result from [X. Guo, F. Zhang, k-cycle resonant graphs, Discrete Math. 135 (1994) 113–20] that a hexagonal system is 1-cycle resonant if and only if it is catacondensed.  相似文献   

8.
For k an integer, let G(a, b, k) denote a simple bipartite graph with bipartition (A, B) where |A| = a ≥ 2, |B| = bk ≥ 2, and each vertex of A has degree at least k. We prove two results concerning the existence of cycles in G(a, b, k).  相似文献   

9.
We prove that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 or 13 is at most . Furthermore, we derive upper bounds on the domination number of bipartite graphs of given minimum degree.  相似文献   

10.
11.
We investigate a class of bipartite graphs, whose structure is determined by a binary number. The work for this research was supported by the Max Kade Foundation.  相似文献   

12.
13.
A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths inG such that every path in ψ has at least two vertices, every vertex ofG is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. Let Ω (ψ) denote the intersection graph of ψ. A graph G is said to be graphoidal if there exists a graphH and a graphoidal cover ψof H such that G is isomorphic to Ω(ψ). In this paper we study the properties of graphoidal graphs and obtain a forbidden subgraph characterisation of bipartite graphoidal graphs.  相似文献   

14.
Let G be a graph on the vertex set V={x 1, ..., x n}. Let k be a field and let R be the polynomial ring k[x 1, ..., x n]. The graph ideal I(G), associated to G, is the ideal of R generated by the set of square-free monomials x ixj so that x i, is adjacent to x j. The graph G is Cohen-Macaulay over k if R/I(G) is a Cohen-Macaulay ring. Let G be a Cohen-Macaulay bipartite graph. The main result of this paper shows that G{v} is Cohen-Macaulay for some vertex v in G. Then as a consequence it is shown that the Reisner-Stanley simplicial complex of I(G) is shellable. An example of N. Terai is presented showing these results fail for Cohen-Macaulay non bipartite graphs. Partially supported by COFAA-IPN, CONACyT and SNI, México.  相似文献   

15.
A set H of disjoint faces of a plane bipartite graph G is a resonant pattern if G has a perfect matching M such that the boundary of each face in H is an M-alternating cycle. An elementary result was obtained [Discrete Appl. Math. 105 (2000) 291-311]: a plane bipartite graph is 1-extendable if and only if every face forms a resonant pattern. In this paper we show that for a 2-extendable plane bipartite graph, any pair of disjoint faces form a resonant pattern, and the converse does not necessarily hold. As an application, we show that all boron-nitrogen (B-N) fullerene graphs are 2-resonant, and construct all the 3-resonant B-N fullerene graphs, which are all k-resonant for any positive integer k. Here a B-N fullerene graph is a plane cubic graph with only square and hexagonal faces, and a B-N fullerene graph is k-resonant if any disjoint faces form a resonant pattern. Finally, the cell polynomials of 3-resonant B-N fullerene graphs are computed.  相似文献   

16.
We construct a new infinite family of factorizations of complete bipartite graphs by factors all of whose components are copies of a (fixed) complete bipartite graph Kp,q. There are simple necessary conditions for such factorizations to exist. The family constructed here demonstrates sufficiency in many new cases. In particular, the conditions are always sufficient when q=p+1.  相似文献   

17.
Let G be a bipartite graph andg and f be two positive integer-valued functions defined on vertex setV(G) ofG such thatg(x) ≤ f(x) for anyx ? V(G). In this paper, a new isolated toughness ofG is defined and some sufficient conditions related to the new toughness forG to have (g,f )-factors are obtained. Furthermore, these results are proved to be sharp in some sense.  相似文献   

18.
Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| ≥ |B|. It is shown that if each vertex of A has degree at least k, and each vertex of B has degree at least l, then G contains a cycle of length at least 2min(|B|, k + l ? 1, 2k ? 2). Then this result is used to determine the minimum number of edges required in a bipartite graph to ensure a cycle of length at least 2m, for any integer m ≥ 2.  相似文献   

19.
20.
The theorem of König on edge colorings in bipartite multigraphs can be seen as the integral version of the theorem of Birkhoff and von Neumann on bistochastic matrices.Here we consider the more general case where the matrix A=(aij) to be decomposed has real entries (instead of non negative entries). We shall concentrate on the integral case. Interpretation in terms of arc and path colorings are given with some properties of these decompositions and one shows that some balancing problems which are trivial in the classical case are now NP-complete. We also introduce requirements on the parity of the paths in the decompositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号