首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-butylene adipate) (PBSA) are crystalline/crystalline polymer blends with PVDF being the high-T(m) component and PBSA being the low-T(m) component, respectively. PVDF/PBSA blends are miscible as shown by the decrease of crystallization peak temperature and melting point temperature of each component with increasing the other component content and the homogeneous melt. The low-T(m) component PBSA presents various confined crystalline morphologies due to the presence of the high-T(m) component PVDF crystals by changing blend composition and crystallization conditions in the blends. There are mainly three different types of crystalline morphologies for PBSA in its miscible blends with PVDF. First, crystallization of PBSA commenced in the interspherulitic regions of the PVDF spherulites and continued to develop inside them in the case of PVDF-rich blends under two-step crystallization conditions. Second, PBSA spherulites appeared first in the left space after the complete crystallization of PVDF, contacted and penetrated the PVDF spherulites by forming interpenetrated spherulites in the case of PVDF-poor blends under two-step crystallization condition. Third, PBSA spherulites nucleated and continued to grow inside the PVDF spherulites that had already filled the whole space during the quenching process in the case of PBSA-rich blends under one-step crystallization condition. The conditions of forming the various crystalline morphologies were discussed.  相似文献   

2.
The effects of nucleating agent multimethyl-benzilidene sorbitol (TM6) on crystallization and morphology of poly(butylene adipate) (PBA) with polymorphic crystal structures were studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical micrographs (POM). In addition to the heterogeneous nucleation, TM6 changes the formation conditions of PBA polymorphic crystals. The addition of TM6 is favorable for the formation of PBA α-form crystals, resulting in the morphological changes from spherulites to interpenetrated fibrils. The influences of TM6 on enzymatic degradation of PBA were studied in terms of the morphological change and weight loss. The results indicate that the α-form crystals induced by TM6 show much slower degradation rate. This work provides an efficient method to control the polymorphic crystal structure and further to regulate the biodegradation rate of polymer materials through modulating the homogeneous and heterogeneous nucleation modes by adding nucleating agents.  相似文献   

3.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   

4.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

5.
A series of aliphatic homopolyesters and copolyesters was prepared from 1,4 butanediol and dimethylesters of succinic and adipic acids through a two-step process of transesterification and polycondensation. The synthesized polyesters were characterized by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and mechanical property measurements. The homopolymer poly(butylene succinate) exhibited the highest tensile strength, which decreased with increasing adipate unit content, passed through a minimum at copolyester composition close to equimolarity and then increased towards the value of poly(butylene adipate). It is interesting to note that in contrast to tensile strength, the elongation at break increased for adipate unit content of 20-40 mol%. The biodegradation of the polymers was investigated by soil burial and enzymatic hydrolysis using three enzymes, Candida cylindracea lipase, Rhizopus delemar lipase, and Pseudomonas fluorescens cholesterol esterase. It appears that the key factor affecting material degradation was its crystallinity.  相似文献   

6.
热塑性淀粉/PBS共混物的微生物降解性研究   总被引:2,自引:0,他引:2  
以甘油作为增塑剂,采用玉米淀粉与改性后的聚丁二酸丁二醇酯(PBS)熔融共混制备出淀粉/PBS共混材料.对这种改善了两相相容性的共混材料在特定微生物条件下的降解行为进行了研究.结果显示,共混物降解28天后,含有30%PBS的共混物质量损失达到35%左右,其力学性能只有降解前的20%,甘油含量减小和PBS含量增加均能减缓材料的降解.且随着降解时间的延长,PBS的结晶度和熔点有所提高.  相似文献   

7.
Poly(butylene succinate-co-butylene adipate) was obtained from 1,4-butanediol and dimethyl esters of succinic and adipic acids through a two step process of transesterification and polycondensation. High molecular weight polyesters were synthesized using hexamethylene diisocyanate as chain extender. The effect of chain extension reaction time and chain extender content on polyester molecular weight, thermal and mechanical properties, was investigated. Polyesters were characterized by means of nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and mechanical property measurements. Chain extension reaction had as a result the significant increase of polyester molecular weight leading to increased tensile strength. Polyester crystallinity, as calculated from XRD and DSC analysis, and melting temperature decreased upon chain extension, while glass transition temperature increased. Polyester biodegradation was investigated by soil burial and enzymatic hydrolysis using the enzyme Pseudomonas fluorescens cholesterol esterase. It appears that biodegradation was affected by polyester crystallinity, rather than by its molecular weight.  相似文献   

8.
Nanostructured materials based on organically modified montmorillonite (OMMT) and polypropylene (PP)/poly(butylene succinate) (PBS) blend were prepared via melt-mixing of PP, PBS, and OMMT in a batch mixer. The weight ratio of PP and PBS was 70:30, and the OMMT loading varied from 0.5 to 5 wt%. The surface morphologies of unmodified and OMMT-modified blend were studied by field-emission scanning electron microscopy. Results showed that the particle size of the dispersed PBS phase was significantly reduced with the addition of a small amount of OMMT (1.5 wt%). Upon the addition of 5 wt% of OMMT, the domain size of the dispersed PBS phase changed significantly from the unmodified blend, and a homogeneous dispersion of very fine particles of PBS was observed. The degree of dispersion of silicate layers in the blend matrix was characterized by X-ray diffraction and transmission electron microscopy. The improved adhesion between the phases and the fine morphology of the dispersed phase contributed to the significant improvement in the properties and thermal stability of the final nanocomposite materials. On the basis of these results, we describe a general understanding of how the morphology is related to the final properties of OMMT-incorporated PP/PBS blend.  相似文献   

9.
Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were mixed at a ratio of 40:60, extruded to form granules and cast into film; then, the PLA, PBAT, and PBAT/PLA film samples were buried in real soil environments. The residual degraded samples were taken regularly from the soil and analyzed by SEM, DSC, TGA, IR spectroscopy and elemental analysis. The analyses showed that PBAT and PLA had different biodegradation mechanisms. Further, the melting temperature and the melting point change of the various components in the PBAT/PLA blend before and after the biodegradation essentially followed the process of the changes in the respective single polymers. After biodegradation, the carbon atom content in the molecular structure of the PBAT, PLA, and PBAT/PLA samples decreased, while the oxygen atom content increased, indicating that the samples indeed degraded. The biodegradation rates of PBAT and PLA in the PBAT/PLA blend were not the same as those for the single materials.  相似文献   

10.
Blends with varied ratio of polylactic acid (PLA) and thermoplastic polyurethane (TPU) were prepared by melt blending. The PLA content in blends was 20, 40, 60 and 80 wt%. Samples of pure PLA and TPU that underwent the same thermal treatment were also prepared. Biodegradation was examined by respirometry. Pure TPU started to degrade immediately due to degradation of the low molecular weight plasticizer in the polymer. Pure PLA, on the other hand, exhibited an incubation period after which degradation progressed rapidly and was almost complete after 70 days. The degradation profile of the blends can be correlated to their morphology. Samples with a co-continuous morphology initially degrade at a higher rate than the rest of the samples due to the higher exposure of the TPU phase in these blends.  相似文献   

11.
Thermoplastic polyester elastomer (TPEE) blends with poly(butylene terephthalate) (PBT) were prepared by melt compounding for the phase morphology and mechanical property studies. Although PBT is immiscible with the continuous soft poly(tetramethylene glycol) (PTMEG) phase of TPEE, it is miscible with the discrete hard PBT one of TPEE. Therefore, PBT and TPEE are compatible and their blends reveal very low level of interfacial tension and very small size of discrete domains, as well as good interfacial adhesion between two phases, which provide high possibility to prepare TPEE alloys with controllable properties. Mechanical test results reveal that both the modulus and yield and tensile strengths increase with increasing weight ratios of PBT. The increased system rigidity and decreased system plasticity are further confirmed by the cyclic tensile tests. The main objective of this work is to provide useful information on the structure and property control of TPEE by simple mixing with aromatic polyesters.  相似文献   

12.
Miscibility with a linear T g–composition relationship was proven for blend of poly(butylene adipate-co-butylene terephthalate) [P(BA-co-BT)] with poly(4-vinyl phenol) (PVPh). In comparison to the blends of PBA/PVPh and poly(butylene terephthalate) (PBT)/PVPh, the Kwei’s T g model fitting on data for the P(BA-co-BT)/PVPh blend yields a q value between those for the PBA/PVPh and PBT/PVPh blends. The q values suggest that the interaction strength in the P(BA-co-BT)/PVPh blend is not as strong as that in the PBT/PVPh blend. Upon mixing the PVPh into the immiscible blend of PBA and PBT, the ternary PBA/PBT/PVPh blends only exhibits partial miscibility. Full-scale ternary miscibility in whole compositions is not possible owing to the significant ∆χ effect (χ ij  – χ ik ). The wavenumber shifts of the hydroxyl IR absorbance band indicates that the H-bonding strength is in decreasing order—PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh—and shows that the BA segment in the copolymer tends to defray interactions between P(BA-co-BT) and PVPh in blends.  相似文献   

13.
The biodegradation of a new tung oil based polyurethane and a derived wood flour (WF) composite was followed during 383 days of exposure to soil or vermiculite media. The hydrolytic degradation was the most important mechanism of deterioration in all cases. A shift of the glass transition towards higher temperatures was observed, which was explained as the result of the preferential attack and removal of free or dangling-pendant chains that plasticize the original material. The contact angle of water was observed to decrease with exposure to soil and vermiculite media, denoting changes in the surface of the material that increased its polarity. Simultaneously, changes in color and fracture surfaces were also evident.  相似文献   

14.
甘志华 《高分子科学》2014,32(9):1243-1252
Oriented and non-oriented Teflon films, which were found to have the same crystalline structure, but different surface morphologies, were used to sandwich poly(butylene adipate)(PBA) films during isothermal crystallization. It was found that both the Teflon surface structure and the PBA polymorphic structure are the determining factors to induce epitaxial crystallization. The oriented Teflon film was able to induce epitaxial crystallization of PBA α crystal, while the non-oriented Teflon did not induce any epitaxial crystallization of PBA. Epitaxial crystallization did not occurred for PBA β crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with α crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films.  相似文献   

15.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content.  相似文献   

16.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms large γform spherulites with extraordinarily weak birefringence at 170℃.Adding 30% PBS makes PVDF exhibit intrigued flower  相似文献   

17.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

18.
An anomalous enhancement of the segmental dynamics upon crystallization is observed by analyzing the dielectric relaxation of a random copolymer formed by stiff aromatic and flexible aliphatic co-monomeric units. The corresponding aliphatic homopolymer is characterized by a low glass transition temperature. The results show that the characteristic self-confinement inherent to semicrystalline polymer systems, which significantly slows down the segmental dynamics as compared to that of pure amorphous ones, is not only avoided but pushed in the opposite direction. Although the effect formally resembles that observed in liquids confined within non-interacting environments, X-ray measurements have shown that the origin in the present case must be sought in an enrichment of the amorphous phase with the most flexible co-monomer upon crystallization.  相似文献   

19.
Thermal ageing of PC/PBT blends and alloys has been studied with dynamic mechanical, calorimetric, and tensile dilatometry tests during creep. The substantial embrittlement occuring in PC/PBT during ageing is tentatively explained in terms of an unusually high densification of the amorphous phase. The phase boundaries have been found to increase in strength during ageing, improving the load bearing properties of the material.  相似文献   

20.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号