首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sharp lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: . Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: γ(G×H)≥γ(G)+γ(H)−1. Infinite families of graphs that attain the bound are presented. For these graphs it also holds that γt(G×H)=γ(G)+γ(H)−1. Some additional parallels with the total domination number are made.  相似文献   

2.
The k-restricted domination number of a graph G is the minimum number d k such that for any subset U of k vertices of G, there is a dominating set in G including U and having at most d k vertices. Some new upper bounds in terms of order and degrees for this number are found.   相似文献   

3.
Let γ(G) and γg(G) be the domination number and the game domination number of a graph G, respectively. In this paper γg-maximal graphs are introduced as the graphs G for which γg(G)=2γ(G)?1 holds. Large families of γg-maximal graphs are constructed among the graphs in which their sets of support vertices are minimum dominating sets. γg-maximal graphs are also characterized among the starlike trees, that is, trees which have exactly one vertex of degree at least 3.  相似文献   

4.
A numerical invariant of directed graphs concerning domination which is named signed domination number γS is studied in this paper. We present some sharp lower bounds for γS in terms of the order, the maximum degree and the chromatic number of a directed graph.  相似文献   

5.
图的符号星k控制数   总被引:3,自引:0,他引:3  
引入了图的符号星k控制的概念.设G=(V,E)是一个图,一个函数f:E→{-1,+1},如果∑e∈E[v]f(e)≥1对于至少k个顶点v∈V(G)成立,则称f为图G的一个符号星k控制函数,其中E(v)表示G中与v点相关联的边集.图G的符号星k控制数定义为γkss(G)=min{∑e∈Ef(e)|f为图G的符号星k控制函数}.在本文中,我们主要给出了一般图的符号星k控制数的若干下界,推广了关于符号星控制的一个结果,并确定路和圈的符号星k控制数.  相似文献   

6.
The open neighborhood N G (e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If for each eE(G), then f is called a signed edge total dominating function of G. The minimum of the values , taken over all signed edge total dominating function f of G, is called the signed edge total domination number of G and is denoted by γ st ′(G). Obviously, γ st ′(G) is defined only for graphs G which have no connected components isomorphic to K 2. In this paper we present some lower bounds for γ st ′(G). In particular, we prove that γ st ′(T) ⩾ 2 − m/3 for every tree T of size m ⩾ 2. We also classify all trees T with γ st ′(T). Research supported by a Faculty Research Grant, University of West Georgia.  相似文献   

7.
The eternal domination number of a graph is the number of guards needed at vertices of the graph to defend the graph against any sequence of attacks at vertices. We consider the model in which at most one guard can move per attack and a guard can move across at most one edge to defend an attack. We prove that there are graphs G for which , where γ(G) is the eternal domination number of G and α(G) is the independence number of G. This matches the upper bound proved by Klostermeyer and MacGillivray.  相似文献   

8.
Let XZnZ denote the unitary Cayley graph of ZnZ. We present results on the tightness of the known inequality γ(XZnZ)γt(XZnZ)g(n), where γ andγt denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal’s function. In particular, we construct integers n with arbitrarily many distinct prime factors such that γ(XZnZ)γt(XZnZ)g(n)?1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs.  相似文献   

9.
The concept of signed domination number of an undirected graph (introduced by J. E. Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater) is transferred to directed graphs. Exact values are found for particular types of tournaments. It is proved that for digraphs with a directed Hamiltonian cycle the signed domination number may be arbitrarily small.  相似文献   

10.
Let G=(V,E) be a graph. A function f:V→{−1,+1} defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. A signed total dominating function f is minimal if there does not exist a signed total dominating function g, fg, for which g(v)≤f(v) for every vV. The weight of a signed total dominating function is the sum of its function values over all vertices of G. The upper signed total domination number of G is the maximum weight of a minimal signed total dominating function on G. In this paper we present a sharp upper bound on the upper signed total domination number of an arbitrary graph. This result generalizes previous results for regular graphs and nearly regular graphs.  相似文献   

11.
The domination numbers of cylindrical grid graphs   总被引:1,自引:0,他引:1  
Let γ(Pm □ Cn) denote the domination number of the cylindrical grid graph formed by the Cartesian product of the graphs Pm, the path of length m, m ? 2 and the graph Cn, the cycle of length n, n ? 3. In this paper, methods to find the domination numbers of graphs of the form Pm □ Cn with n ? 3 and m = 2, 3 and 4 are proposed. Moreover, bounds on domination numbers of the graphs P5 □ Cn, n ? 3 are found. The methods that are used to prove that results readily lead to algorithms for finding minimum dominating sets of the above mentioned graphs.  相似文献   

12.
《Discrete Mathematics》2004,274(1-3):125-135
The classical Ramsey number r(m,n) can be defined as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, β(B)⩾m or β(R)⩾n, where β(G) denotes the independence number of a graph G. We define the upper domination Ramsey number u(m,n) as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or Γ(R)⩾n, where Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. The mixed domination Ramsey number v(m,n) is defined to be the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or β(R)⩾n. Since β(G)⩽Γ(G) for every graph G, u(m,n)⩽v(m,n)⩽r(m,n). We develop techniques to obtain upper bounds for upper domination Ramsey numbers of the form u(3,n) and mixed domination Ramsey numbers of the form v(3,n). We show that u(3,3)=v(3,3)=6, u(3,4)=8, v(3,4)=9, u(3,5)=v(3,5)=12 and u(3,6)=v(3,6)=15.  相似文献   

13.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

14.
Let G be a simple graph, and let p be a positive integer. A subset DV(G) is a p-dominating set of the graph G, if every vertex vV(G)-D is adjacent to at least p vertices in D. The p-domination numberγp(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ1(G) is the usual domination numberγ(G). This definition immediately leads to the inequality γ(G)?γ2(G).In this paper we present some sufficient as well as some necessary conditions for graphs G with the property that γ2(G)=γ(G). In particular, we characterize all cactus graphs H with γ2(H)=γ(H).  相似文献   

15.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G=0? and show that this problem has a negative answer.  相似文献   

16.
On edge domination numbers of graphs   总被引:1,自引:0,他引:1  
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures.  相似文献   

17.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

18.
On signed cycle domination in graphs   总被引:2,自引:0,他引:2  
Baogen Xu 《Discrete Mathematics》2009,309(4):1007-1387
Let G=(V,E) be a graph, a function f:E→{−1,1} is said to be an signed cycle dominating function (SCDF) of G if ∑eE(C)f(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as is an SCDF of G}. In this paper, we obtain bounds on , characterize all connected graphs G with , and determine the exact value of for some special classes of graphs G. In addition, we pose some open problems and conjectures.  相似文献   

19.
The domination number γ(G) of a connected graph G of order n is bounded below by(n+2-e(G))/ 3 , where (G) denotes the maximum number of leaves in any spanning tree of G. We show that (n+2-e(G))/ 3 = γ(G) if and only if there exists a tree T ∈ T ( G) ∩ R such that n1(T ) = e(G), where n1(T ) denotes the number of leaves of T1, R denotes the family of all trees in which the distance between any two distinct leaves is congruent to 2 modulo 3, and T (G) denotes the set composed by the spanning trees of G. As a consequence of the study, we show that if (n+2-e(G))/ 3 = γ(G), then there exists a minimum dominating set in G whose induced subgraph is an independent set. Finally, we characterize all unicyclic graphs G for which equality (n+2-e(G))/ 3= γ(G) holds and we show that the length of the unique cycle of any unicyclic graph G with (n+2-e(G))/ 3= γ(G) belongs to {4} ∪ {3 , 6, 9, . . . }.  相似文献   

20.
We prove the existence of certain spanning subgraphs of graphs embedded in the torus and the Klein bottle. Matheson and Tarjan proved that a triangulated disc with n vertices can be dominated by a set of no more than n/3 of its vertices and thus, so can any finite graph which triangulates the plane. We use our existence theorems to prove results closely allied to those of Matheson and Tarjan, but for the torus and the Klein bottle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号