首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Implementations of the Monte Carlo EM Algorithm   总被引:1,自引:0,他引:1  
The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most exible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies.  相似文献   

2.
Exact conditional goodness-of-fit tests for discrete exponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.  相似文献   

3.
Sampling from complex distributions is an important but challenging topic in scientific and statistical computation. We synthesize three ideas, tempering, resampling, and Markov moving, and propose a general framework of resampling Markov chain Monte Carlo (MCMC). This framework not only accommodates various existing algorithms, including resample-move, importance resampling MCMC, and equi-energy sampling, but also leads to a generalized resample-move algorithm. We provide some basic analysis of these algorithms within the general framework, and present three simulation studies to compare these algorithms together with parallel tempering in the difficult situation where new modes emerge in the tails of previous tempering distributions. Our analysis and empirical results suggest that generalized resample-move tends to perform the best among all the algorithms studied when the Markov kernels lead to fast mixing or even locally so toward restricted distributions, whereas parallel tempering tends to perform the best when the Markov kernels lead to slow mixing, without even converging fast to restricted distributions. Moreover, importance resampling MCMC and equi-energy sampling perform similarly to each other, often worse than independence Metropolis resampling MCMC. Therefore, different algorithms seem to have advantages in different settings.  相似文献   

4.
Markov Chain Monte Carlo (MCMC) algorithms play an important role in statistical inference problems dealing with intractable probability distributions. Recently, many MCMC algorithms such as Hamiltonian Monte Carlo (HMC) and Riemannian Manifold HMC have been proposed to provide distant proposals with high acceptance rate. These algorithms, however, tend to be computationally intensive which could limit their usefulness, especially for big data problems due to repetitive evaluations of functions and statistical quantities that depend on the data. This issue occurs in many statistic computing problems. In this paper, we propose a novel strategy that exploits smoothness (regularity) in parameter space to improve computational efficiency of MCMC algorithms. When evaluation of functions or statistical quantities are needed at a point in parameter space, interpolation from precomputed values or previous computed values is used. More specifically, we focus on HMC algorithms that use geometric information for faster exploration of probability distributions. Our proposed method is based on precomputing the required geometric information on a set of grids before running sampling algorithm and approximating the geometric information for the current location of the sampler using the precomputed information at nearby grids at each iteration of HMC. Sparse grid interpolation method is used for high dimensional problems. Tests on computational examples are shown to illustrate the advantages of our method.  相似文献   

5.
Conditional inference eliminates nuisance parameters by conditioning on their sufficient statistics. For contingency tables conditional inference entails enumerating all tables with the same sufficient statistics as the observed data. For moderately sized tables and/or complex models, the computing time to enumerate these tables is often prohibitive. Monte Carlo approximations offer a viable alternative provided it is possible to obtain samples from the correct conditional distribution. This article presents an MCMC extension of the importance sampling algorithm, using a rounded normal candidate to update randomly chosen cells while leaving the remainder of the table fixed. This local approximation can greatly increase the efficiency of the rounded normal candidate. By choosing the number of cells to be updated at random, a balance is struck between dependency in the Markov chain and accuracy of the candidate.  相似文献   

6.
The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.  相似文献   

7.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

8.
We describe NIMBLE, a system for programming statistical algorithms for general model structures within R. NIMBLE is designed to meet three challenges: flexible model specification, a language for programming algorithms that can use different models, and a balance between high-level programmability and execution efficiency. For model specification, NIMBLE extends the BUGS language and creates model objects, which can manipulate variables, calculate log probability values, generate simulations, and query the relationships among variables. For algorithm programming, NIMBLE provides functions that operate with model objects using two stages of evaluation. The first stage allows specialization of a function to a particular model and/or nodes, such as creating a Metropolis-Hastings sampler for a particular block of nodes. The second stage allows repeated execution of computations using the results of the first stage. To achieve efficient second-stage computation, NIMBLE compiles models and functions via C++, using the Eigen library for linear algebra, and provides the user with an interface to compiled objects. The NIMBLE language represents a compilable domain-specific language (DSL) embedded within R. This article provides an overview of the design and rationale for NIMBLE along with illustrative examples including importance sampling, Markov chain Monte Carlo (MCMC) and Monte Carlo expectation maximization (MCEM). Supplementary materials for this article are available online.  相似文献   

9.
In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on fixed parameters and sampling of fixed parameters conditional on latent states. In some regions of the parameter space, this standard data augmentation (DA) algorithm can be inefficient. To improve efficiency, we apply the interweaving strategies of Yu and Meng to DLMs. For this, we introduce three novel alternative DAs for DLMs: the scaled errors, wrongly scaled errors, and wrongly scaled disturbances. With the latent states and the less well known scaled disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a unique MCMC sampling strategy and they can be combined into interweaving and alternating strategies that improve MCMC efficiency. We assess these strategies using the local level model and demonstrate that several strategies improve efficiency relative to the standard approach and the most efficient strategy interweaves the scaled errors and scaled disturbances. Supplementary materials are available online for this article.  相似文献   

10.
Clustering is one of the most widely used procedures in the analysis of microarray data, for example with the goal of discovering cancer subtypes based on observed heterogeneity of genetic marks between different tissues. It is well known that in such high-dimensional settings, the existence of many noise variables can overwhelm the few signals embedded in the high-dimensional space. We propose a novel Bayesian approach based on Dirichlet process with a sparsity prior that simultaneous performs variable selection and clustering, and also discover variables that only distinguish a subset of the cluster components. Unlike previous Bayesian formulations, we use Dirichlet process (DP) for both clustering of samples as well as for regularizing the high-dimensional mean/variance structure. To solve the computational challenge brought by this double usage of DP, we propose to make use of a sequential sampling scheme embedded within Markov chain Monte Carlo (MCMC) updates to improve the naive implementation of existing algorithms for DP mixture models. Our method is demonstrated on a simulation study and illustrated with the leukemia gene expression dataset.  相似文献   

11.
Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanonical Monte Carlo) is discussed as a method of rare event sampling. Starting from a review of the generic framework of importance sampling, multicanonical MCMC is introduced, followed by applications in random matrices, random graphs, and chaotic dynamical systems. Replica exchange MCMC (also known as parallel tempering or Metropolis-coupled MCMC) is also explained as an alternative to multicanonical MCMC. In the last section, multicanonical MCMC is applied to data surrogation; a successful implementation in surrogating time series is shown. In the appendix, calculation of averages and normalizing constant in an exponential family, phase coexistence, simulated tempering, parallelization, and multivariate extensions are discussed.  相似文献   

12.
We investigate the class of σ-stable Poisson–Kingman random probability measures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a large class of discrete RPMs, which encompasses most of the popular discrete RPMs used in Bayesian nonparametrics, such as the Dirichlet process, Pitman–Yor process, the normalized inverse Gaussian process, and the normalized generalized Gamma process. We show how certain sampling properties and marginal characterizations of σ-stable Poisson–Kingman RPMs can be usefully exploited for devising a Markov chain Monte Carlo (MCMC) algorithm for performing posterior inference with a Bayesian nonparametric mixture model. Specifically, we introduce a novel and efficient MCMC sampling scheme in an augmented space that has a small number of auxiliary variables per iteration. We apply our sampling scheme to a density estimation and clustering tasks with unidimensional and multidimensional datasets, and compare it against competing MCMC sampling schemes. Supplementary materials for this article are available online.  相似文献   

13.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

14.
A multiple‐regime threshold nonlinear financial time series model, with a fat‐tailed error distribution, is discussed and Bayesian estimation and inference are considered. Furthermore, approximate Bayesian posterior model comparison among competing models with different numbers of regimes is considered which is effectively a test for the number of required regimes. An adaptive Markov chain Monte Carlo (MCMC) sampling scheme is designed, while importance sampling is employed to estimate Bayesian residuals for model diagnostic testing. Our modeling framework provides a parsimonious representation of well‐known stylized features of financial time series and facilitates statistical inference in the presence of high or explosive persistence and dynamic conditional volatility. We focus on the three‐regime case where the main feature of the model is to capturing of mean and volatility asymmetries in financial markets, while allowing an explosive volatility regime. A simulation study highlights the properties of our MCMC estimators and the accuracy and favourable performance as a model selection tool, compared with a deviance criterion, of the posterior model probability approximation method. An empirical study of eight international oil and gas markets provides strong support for the three‐regime model over its competitors, in most markets, in terms of model posterior probability and in showing three distinct regime behaviours: falling/explosive, dormant and rising markets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

16.
Adaptive Markov Chain Monte Carlo (MCMC) algorithms attempt to ‘learn’ from the results of past iterations so the Markov chain can converge quicker. Unfortunately, adaptive MCMC algorithms are no longer Markovian, so their convergence is difficult to guarantee. In this paper, we develop new diagnostics to determine whether the adaption is still improving the convergence. We present an algorithm which automatically stops adapting once it determines further adaption will not increase the convergence speed. Our algorithm allows the computer to tune a ‘good’ Markov chain through multiple phases of adaption, and then run conventional non-adaptive MCMC. In this way, the efficiency gains of adaptive MCMC can be obtained while still ensuring convergence to the target distribution.  相似文献   

17.
The correlation matrix (denoted by R) plays an important role in many statistical models. Unfortunately, sampling the correlation matrix in Markov chain Monte Carlo (MCMC) algorithms can be problematic. In addition to the positive definite constraint of covariance matrices, correlation matrices have diagonal elements fixed at one. In this article, we propose an efficient two-stage parameter expanded reparameterization and Metropolis-Hastings (PX-RPMH) algorithm for simulating R. Using this algorithm, we draw all elements of R simultaneously by first drawing a covariance matrix from an inverse Wishart distribution, and then translating it back to a correlation matrix through a reduction function and accepting it based on a Metropolis-Hastings acceptance probability. This algorithm is illustrated using multivariate probit (MVP) models and multivariate regression (MVR) models with a common correlation matrix across groups. Via both a simulation study and a real data example, the performance of the PX-RPMH algorithm is compared with those of other common algorithms. The results show that the PX-RPMH algorithm is more efficient than other methods for sampling a correlation matrix.  相似文献   

18.
In recent years, parallel processing has become widely available to researchers. It can be applied in an obvious way in the context of Monte Carlo simulation, but techniques for “parallelizing” Markov chain Monte Carlo (MCMC) algorithms are not so obvious, apart from the natural approach of generating multiple chains in parallel. Although generation of parallel chains is generally the easiest approach, in cases where burn-in is a serious problem, it is often desirable to use parallelization to speed up generation of a single chain. This article briefly discusses some existing methods for parallelization of MCMC algorithms, and proposes a new “pre-fetching” algorithm to parallelize generation of a single chain.  相似文献   

19.
This paper introduces a new and computationally efficient Markov chain Monte Carlo (MCMC) estimation algorithm for the Bayesian analysis of zero, one, and zero and one inflated beta regression models. The algorithm is computationally efficient in the sense that it has low MCMC autocorrelations and computational time. A simulation study shows that the proposed algorithm outperforms the slice sampling and random walk Metropolis–Hastings algorithms in both small and large sample settings. An empirical illustration on a loss given default banking model demonstrates the usefulness of the proposed algorithm.  相似文献   

20.
Likelihood estimation in hierarchical models is often complicated by the fact that the likelihood function involves an analytically intractable integral. Numerical approximation to this integral is an option but it is generally not recommended when the integral dimension is high. An alternative approach is based on the ideas of Monte Carlo integration, which approximates the intractable integral by an empirical average based on simulations. This article investigates the efficiency of two Monte Carlo estimation methods, the Monte Carlo EM (MCEM) algorithm and simulated maximum likelihood (SML). We derive the asymptotic Monte Carlo errors of both methods and show that, even under the optimal SML importance sampling distribution, the efficiency of SML decreases rapidly (relative to that of MCEM) as the missing information about the unknown parameter increases. We illustrate our results in a simple mixed model example and perform a simulation study which shows that, compared to MCEM, SML can be extremely inefficient in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号