共查询到20条相似文献,搜索用时 15 毫秒
1.
描述最大似然参数估计问题,介绍如何用EM算法求解最大似然参数估计.首先给出EM算法的抽象形式,然后介绍EM算法的一个应用:求隐Markov模型中的参数估计.用EM算法推导出隐Markov模型中参数的迭代公式. 相似文献
2.
Sinan Yildirim Sumeetpal S. Singh Arnaud Doucet 《Journal of computational and graphical statistics》2013,22(4):906-926
Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online expectation–maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme by using both simulated and real data originating from DNA analysis. The supplementary materials for the article are available online. 相似文献
3.
因子分析是一种重要的多元统计分析技术,可以采用EM算法迭代得到模型的未知参数,其中一个关键的问题就是在已知观测数据和前一次迭代得到的参数估计值的条件下,如何得到隐变量的条件概率密度函数.国内外的有关文献都不加说明地直接给出了这个函数,本文给出了详细的推导过程. 相似文献
4.
Teo Sharia 《Statistical Inference for Stochastic Processes》2008,11(2):157-175
We consider estimation procedures which are recursive in the sense that each successive estimator is obtained from the previous one by a simple adjustment. We propose a wide class of recursive estimation procedures for the general statistical model and study convergence. 相似文献
5.
《Journal of computational and graphical statistics》2013,22(4):697-712
Maximum likelihood estimation in finite mixture distributions is typically approached as an incomplete data problem to allow application of the expectation-maximization (EM) algorithm. In its general formulation, the EM algorithm involves the notion of a complete data space, in which the observed measurements and incomplete data are embedded. An advantage is that many difficult estimation problems are facilitated when viewed in this way. One drawback is that the simultaneous update used by standard EM requires overly informative complete data spaces, which leads to slow convergence in some situations. In the incomplete data context, it has been shown that the use of less informative complete data spaces, or equivalently smaller missing data spaces, can lead to faster convergence without sacrifying simplicity. However, in the mixture case, little progress has been made in speeding up EM. In this article we propose a component-wise EM for mixtures. It uses, at each iteration, the smallest admissible missing data space by intrinsically decoupling the parameter updates. Monotonicity is maintained, although the estimated proportions may not sum to one during the course of the iteration. However, we prove that the mixing proportions will satisfy this constraint upon convergence. Our proof of convergence relies on the interpretation of our procedure as a proximal point algorithm. For performance comparison, we consider standard EM as well as two other algorithms based on missing data space reduction, namely the SAGE and AECME algorithms. We provide adaptations of these general procedures to the mixture case. We also consider the ECME algorithm, which is not a data augmentation scheme but still aims at accelerating EM. Our numerical experiments illustrate the advantages of the component-wise EM algorithm relative to these other methods. 相似文献
6.
本文研究缺失数据下对数线性模型参数的极大似然估计问题.通过Monte-Carlo EM算法去拟合所提出的模型.其中,在期望步中利用Metropolis-Hastings算法产生一个缺失数据的样本,在最大化步中利用Newton-Raphson迭代使似然函数最大化.最后,利用观测数据的Fisher信息得到参数极大似然估计的渐近方差和标准误差. 相似文献
7.
In this paper, we consider a distributed estimation problem in which multiple observations of a signal process are combined
via the maximum function for the decision making. A key result established is that, under suitable technical conditions, the
optimal decision function can be implemented by means of thresholds. A natural question is how to determine the optimal threshold
value. We propose here an algorithm for threshold adjustment by means of training sequences. The algorithm is a variation
of the Kiefer-Wolfowitz algorithm with expanding truncations and randomized differences. A result of the paper is to establish
the convergence of the algorithm if the variance of observation noises is small enough. 相似文献
8.
Sébastien Aupetit Nicolas Monmarché Mohamed Slimane 《Journal of Mathematical Modelling and Algorithms》2007,6(2):175-193
In this work we consider the problem of Hidden Markov Models (HMM) training. This problem can be considered as a global optimization
problem and we focus our study on the Particle Swarm Optimization (PSO) algorithm. To take advantage of the search strategy
adopted by PSO, we need to modify the HMM's search space. Moreover, we introduce a local search technique from the field of
HMMs and that is known as the Baum–Welch algorithm. A parameter study is then presented to evaluate the importance of several
parameters of PSO on artificial data and natural data extracted from images. 相似文献
9.
10.
Sinan Yıldırım Sumeetpal S. Singh Thomas Dean Ajay Jasra 《Journal of computational and graphical statistics》2013,22(3):846-865
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the α-stable distribution, g-and-k distribution, and the stochastic volatility model with α-stable returns, using both real and synthetic data. 相似文献
11.
The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter started from two different initial distributions, and a convergence in expectation are considered. The results are illustrated using different HMM of interest: the dynamic tobit model, the nonlinear state space model and the stochastic volatility model. 相似文献
12.
利用EM算法研究了来自于Lindley分布权重的混合Poisson模型,即Poisson-Lindley回归模型,从而利用基于完全数据似然函数的条件期望进行统计诊断和局部影响分析,得到了几个有用的诊断统计量,并用一个数值实例说明了所得统计量的有效性. 相似文献
13.
利用剖面隐马氏模型获得多序列联配,一般需要经过初始化、训练、联配三个过程.然而,目前广泛采用的Baum—welch训练算法假设各条可观察序列互相独立,这与实际情况有所不符.本文对剖面隐马氏模型,给出可观察序列在互相不独立情况下的改进Baum—wlelch算法,在可观察序列两种特殊情况下(互相独立和一致依赖),得到了改进算法的具体表达式,讨论了一般情况下权重的选取方法.最后通过一个具体的蛋白质家族的多序列联配来说明改进算法的效果. 相似文献
14.
《Journal of computational and graphical statistics》2013,22(1):228-245
Linear transformation models, which have been extensively studied in survival analysis, include the two special cases: the proportional hazards model and the proportional odds model. Nonparametric maximum likelihood estimation is usually used to derive the efficient estimators. However, due to the large number of nuisance parameters, calculation of the nonparametric maximum likelihood estimator is difficult in practice, except for the proportional hazards model. We propose an efficient algorithm for computing the maximum likelihood estimates, where the dimensionality of the parameter space is dramatically reduced so that only a finite number of equations need to be solved. Moreover, the asymptotic variance is automatically estimated in the computing procedure. Extensive simulation studies indicate that the proposed algorithm works very well for linear transformation models. A real example is presented for an illustration of the new methodology. 相似文献
15.
Tobias Rydén D. M. Titterington 《Journal of computational and graphical statistics》2013,22(2):194-211
Abstract Versions of the Gibbs Sampler are derived for the analysis of data from hidden Markov chains and hidden Markov random fields. The principal new development is to use the pseudolikelihood function associated with the underlying Markov process in place of the likelihood, which is intractable in the case of a Markov random field, in the simulation step for the parameters in the Markov process. Theoretical aspects are discussed and a numerical study is reported. 相似文献
16.
隐马尔可夫模型 ( HMM)是一个能够通过可观测的数据很好地捕捉真实空间统计性质的随机模型 ,该模型已成功地运用于语音识别 ,目前 HMM已开始应用于生物信息学 ( bioinformatics) ,已在生物序列分析中得到了广泛的应用 .本文首先介绍了 HMM的基本结构 ,然后着重讨论了 HMM在 DNA序列的多重比对 ,基因发现等生物序列分析中的应用 相似文献
17.
Let { X n} be a Markov chain that is either f -mixing or satisfies the Poisson equation.In this note we obtain the convergence rate under L 1 -criterion for bounded functions of the X k 's. And in the hidden Markov model setup { (X n ,Y n ) }we study the kernel estimate of the density of the observed variables { Y n }when a 'stable' status is reached. 相似文献
18.
Han-Fu Chen Hai-Tao Fang Li-Li Zhang 《Journal of Mathematical Analysis and Applications》2011,382(2):822-842
The principal component analysis is to recursively estimate the eigenvectors and the corresponding eigenvalues of a symmetric matrix A based on its noisy observations Ak=A+Nk, where A is allowed to have arbitrary eigenvalues with multiplicity possibly bigger than one. In the paper the recursive algorithms are proposed and their ordered convergence is established: It is shown that the first algorithm a.s. converges to a unit eigenvector corresponding to the largest eigenvalue, the second algorithm a.s. converges to a unit eigenvector corresponding to either the second largest eigenvalue in the case the largest eigenvalue is of single multiplicity or the largest eigenvalue if the multiplicity of the largest eigenvalue is bigger than one, and so on. The convergence rate is also derived. 相似文献
19.
Radford M. Neal 《Journal of computational and graphical statistics》2013,22(2):249-265
Abstract This article reviews Markov chain methods for sampling from the posterior distribution of a Dirichlet process mixture model and presents two new classes of methods. One new approach is to make Metropolis—Hastings updates of the indicators specifying which mixture component is associated with each observation, perhaps supplemented with a partial form of Gibbs sampling. The other new approach extends Gibbs sampling for these indicators by using a set of auxiliary parameters. These methods are simple to implement and are more efficient than previous ways of handling general Dirichlet process mixture models with non-conjugate priors. 相似文献
20.
周兴才 《数学的实践与认识》2006,36(12):174-179
在一般因子分析模型的基础上,假设连续的潜在向量(公共因子)与另一观察随机向量有关,并假定是一个多元线性回归模型,对由此扩展的因子分析模型进行分析.主要通过EM算法给出模型中参数的估计.文中给出了它的详细推导过程. 相似文献