首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Multilayer structured alloys which have a layer thickness less than 10 nm have been produced by the application of repeated pressing and rolling to the initially macroscopically thick layered sample. The TEM observation of a Ag/Fe sample revealed a regular alternate lamination of Ag and Fe with the layer thickness in the range of 10 nm. The measured electrical resistivity showed a large dependence on the applied magnetic field which is characteristic to the composite structure of magnetic and non-magnetic metals in the thickness range of nanometers.  相似文献   

2.
The magnetic properties of molecular beam epitaxially (MBE) grown FE(110)/Ag(111) heterostructures were investigated with Mössbauer spectroscopy. The Fe bilayers were fixed at 3 ML (monolayer) thickness and the Ag bilayer thickness varied from 4 ML to 20 ML. We found that as the Ag layer became thick enough (>17 ML) to magnetically isolate the Fe layers, a quasi-linear temperature dependence of the hyperfine field results due to the 2-D spin wave excitations. As the Ag layer is reduced, a dimensional crossover in the excitations is induced by the magnetic interaction between Fe layers which makesM(T) change from a two-dimensionalT relation to a three-dimensionalT 3/2 dependence. We constructed a simple theoretical model to motivate the explanation for the experimental results and obtained approximate values for the interlayer coupling strength for various Ag bilayer thicknesses.  相似文献   

3.
Magnetic interactions between Fe layers in Fe(110)/Ag(111) superlattices grown by molecular beam epitaxy have been observed using Mössbauer spectroscopy. By measuring the temperature dependence of the hyperfine field at the Fe layers, characteristics of the spin-wave spectrum can be deduced. As the Ag thickness between layers is increased, the magnetic interaction between Fe layers decreases, and the spin-wave spectrum undergoes a transformation from three-dimensional to quasi-two-dimensional.  相似文献   

4.
Multilayer Fe/Ti films are synthesized by deposition in a Penning discharge. Measurements are made of thhe static hysteresis loops and Mössbauer spectra on Fe57 nuclei. The hyperfine magnetic field distribution functions are calculated. It is established that the spontaneous magnetization of Fe/Ti magnetic superlattices undergoes very strong oscillations as a function of the Ti layer thickness. Three groups of peaks are noted in the hyperfine field distribution functions, corresponding to three nonequivalent states of the Fe ions, in one of which these ions do not have a characteristic magnetic moment. These results also agree with measurements of the temperature dependence of the magnetization in weak magnetic fields. For some Ti interlayer thicknesses the saturation magnetization scaled to the Fe content is much higher than the saturation magnetization of bulk Fe.  相似文献   

5.
Using time-differential perturbed-angular-correlation technique, hyperfine fields at 99Tc (←99Mo) in the Mo layers in polyimide/Fe (10 nm)/[Mo (t Mo)/Fe (2.0 nm)]120, where t Mo is in the range between 0.4 and 1.5 nm, were measured at room temperature. The values of the magnetic hyperfine field at the Mo/Fe interface were extracted. Its dependence on the Mo layer thickness suggests that the oscillatory interlayer exchange coupling is due to conduction electron spin polarization in the Mo layer, which in turn is produced via an RKKY-type mechanism.  相似文献   

6.
The hyperfine field and the magnetic anisotropy of a Fe layer as a function of thickness have been investigated in several Ni/57Fex/Ni(1 1 1) trilayers with relatively thick Ni layers by Mössbauer spectroscopy. For Fe layers with thickness below 16 Å, the Mössbauer spectra show always the presence of two ferromagnetic phases with high-spin state. In the range between 6 and 8 Å, also a ferromagnetic phase with low-spin state and a paramagnetic phase have been found. The evolution of the mean hyperfine field of the 57Fe nuclei is used to study the Fe growth. A structural FCCBCC phase transition is found to begin with an iron thickness of 8 Å. The easy direction of the magnetization is found out-of-plane for Fe interlayer with FCC structure, and perfectly in plane for Fe interlayer with BCC structure.  相似文献   

7.
Fe/Cr multilayers with monatomic Sn layers embedded in the Cr layers were grown epitaxially on MgO(001) substrates, and the magnetic hyperfine field at the 119Sn nuclear sites was examined using M?ssbauer spectroscopy. It was found that nonzero hyperfine field is induced at the Sn sites at room temperature and that the value reduces drastically from 10 to 2 T when the Cr layer thickness decreases from 80 to 10 A. The result indicates that the Cr layers are magnetically ordered even when the thickness is very small and that the magnetic moments of Cr become smaller as the Cr layer thickness decreases.  相似文献   

8.
Phalet  T.  Prandolini  M.J.  Brewer  W.D.  Dekoster  J.  De Moor  P.  Severijns  N.  Schuurmans  P.  Turrell  B.G.  Van Geert  A.  Vanneste  L.  Vereecke  B.  Versyck  S. 《Hyperfine Interactions》1999,120(1-8):209-214
Near perpendicular magnetic hyperfine fields in 110mAg have been observed in Fe/Ag multilayers. These fields are studied by low temperature nuclear orientation (LTNO) in multilayers [Ag(x ML)/Fe(y ML)]20, with (x,y) monolayer (ML) values of (2,10), (3,9), (5,10) and (3,18). The 110mAg γ-ray anisotropy was measured as a function of applied magnetic field parallel to the multilayer. The average induced hyperfine field of Ag is significantly influenced by the quality of the multilayer as measured by X-ray diffraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Hyperfine fields at Fe and Mo layers in polyimide/Fe(10 nm)/[Mo(1.1 nm)/Fe(2.0 nm)]120 and [Mo(1.3 nm) /Fe(2.0 nm)]120 multilayers prepared by the electron-beam evaporation technique were measured at room-temperature by Mössbauer spectroscopy and perturbed-angular-correlation spectroscopy. The hyperfine fields in the Fe layers do not show a clear dependence on the Mo layer thickness. On the other hand, the hyperfine fields in the Mo layers show different magnetic structures in these samples. The difference suggests a variation of electron spin polarization in the Mo layers.  相似文献   

10.
"利用对靶磁控溅射法制备了一系列Ag/Fe/Ag纳米薄膜,沉积态样品Fe层厚度固定为35 nm,Ag层厚度为1、2、3、4、5 nm.随后对沉积态样品进行了退火处理,退火温度分别为200、300、400、500、600 ℃ , 退火30 min. 利用VSM测量了样品的磁特性, 利用SPM观察样品表面形貌和磁畴结构,并且利用XRD分析了样品的晶体结构.研究结果表明,沉积态样品随Ag层厚度的变化,垂直和平行膜面矫顽力均先增加后减小.当Ag层厚度为3 nm时,垂直膜面矫顽力最大约为260 Oe,样品颗粒分布均  相似文献   

11.
Fe/M (M = Ag, Zn and Sn) multilayers prepared by a vacuum evaporation method are studied by Mössbauer spectroscopy (MS), Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). For the case of an M = Ag multilayer, MS reveals that Fe in the multilayer remains as an-phase down to the layer thickness of 10 nm. This result is in agreement with the RBS result that Fe and Ag form a completely discrete layer structure without any mutual mixing. For the case of M = Zn and Sn, RBS reveals that a considerable mixing has taken place between Fe and Sn during the specimen preparation. MS on Fe/Sn specimens with different layer thickness shows that an alloy phase of about 5 nm thickness is formed at the interface. Structural as well as magnetic properties of the alloy phase are discussed based on MS at different temperatures and on reported results of the intermetallic compound FeSn.  相似文献   

12.
Nearly perpendicular magnetic hyperfine fields have been observed for the first time in the Ag "spacers" of Fe/Ag multilayers using low temperature nuclear orientation of (110)Ag(m) at 6 mK. At the same time, vibrating sample magnetometry measurements at temperatures down to 4 K have shown the magnetic anisotropy of the Fe to be in plane. The direction of the Ag hyperfine field is thus noncollinear (nearly orthogonal) to the Fe anisotropy. These results are compared with full potential linearized augmented plane wave calculations using the wien97 code.  相似文献   

13.
Guo  G. Y.  Ebert  H. 《Hyperfine Interactions》1996,97(1):11-18
A detailed theoretical study of the magnetic moments and magnetic hyperfine fields in several Fe multilayers (Fe fcc(001)/5X fcc(001), X=Cu and Ag, and Fe bcc(001)/5X fcc(001), X=Ag and Au) as well as in bulk Fe is presented. The calculations have been performed using the spin-polarized, relativistic linear muffin-tin orbital (SPR-LMTO) method of band structure calculation. Therefore, not only the contribution to the hyperfine fields due to the conventional Fermi contact interaction but also due to the spin dipolar and orbital contributions induced by the crystal field and by spin-orbit coupling are accounted for. To decompose the hyperfine field of non-s-electrons into these contributions it has been assumed that they are proportional to the corresponding so-called magnetic dipole moment and the orbital magnetic moment, respectively. In contrast to previous results for pure metals and alloys not only the orbital but also the spin dipolar hyperfine field was found to be non-negligible. The anisotropy of the hyperfine field determined by calculations for in-plane and perpendicular orientation of the magnetisation was found to be very pronounced and closely connected with the corresponding anisotropy of the magnetic dipole moment and the orbital moment.  相似文献   

14.
Multilayers with Ag/Fe/B and Ag/B/Fe layer sequence were studied in order to reveal differences of top and bottom interfaces of Fe. The hyperfine field distribution depends on the layer sequence and the differences could be attributed to a different B concentration distribution at the top and bottom Fe–B interface.  相似文献   

15.
李宝河  黄阀  杨涛  冯春  翟中海  朱逢吾 《物理学报》2005,54(8):3867-3871
用磁控溅射法在单晶MgO(100)基片上制备了[FePt 2 nm/Ag dnm]10多层膜, 经真空热处理后,得到具有高矫顽力的垂直取向L10-FePt/Ag颗粒膜.x射线衍射结 果表明,在250 ℃的热基片上溅射,当Ag层厚度d=3—11 nm时,FePt颗粒具有很好的[001]取向,随着Ag层厚度的增加,FePt颗粒尺寸减小.[FePt 2 nm/Ag 9 nm]10经过6 00 ℃真空热处理15 min后,颗粒大小仅约8 nm,垂直矫顽力达到692 kA/m.这种无磁耦合作用的颗粒膜,适合用作超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 纳米颗粒膜 0-FePt/Ag')" href="#">L10-FePt/Ag  相似文献   

16.
A comparative study is accomplished in the domain where iron layers are amorphous. The dependence of the magnetic structure of Tb/Fe multilayered films on temperature have been investigated by Mössbauer spectrometry. When the iron layer is thinner than 2.3 nm, the average hyperfine field at the iron site remains nearly constant at 4.2 K, while it decreases strongly for iron thickness higher than 1.5 nm at room temperature. This decrease of H is due to the decrease of the Curie temperature, which can be explained from the structure of iron layers.  相似文献   

17.
Multilayered films with artificial superstructures were prepared by alternately depositing Fe and Nd in ultrahigh vacuum. The magnetic properties are studied from57Fe Mössbauer spectroscopy. The hyperfine field in Fe layers and the direction of Fe magnetic moments depend on the Fe and Nd layer thicknesses. For films with certain Fe and Nd layer thicknesses, the direction of Fe magnetic moments is in-plane at 300 K but changes to be perpendicular at low temperatures. The direction of Fe magnetic moments is discussed in relation with the magnetization of interface Nd atoms.  相似文献   

18.
Synchrotron Mössbauer reflectometry and CEMS results on a [57Fe(2.55 nm)/FeSi\break(1.57 nm)]10 multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by α‐Fe and an interface layer of random α‐(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X‐ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Θ–2Θ scans and time spectra (E = 14.413 keV, λ = 0.0860 nm) were recorded in different external magnetic fields (0 < Bext < 0.95 T) perpendicular to the scattering plane. The time integral delayed nuclear Θ–2Θ scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Θ–2Θ scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi]10 varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface.  相似文献   

19.
于涛  刘毅  朱正勇  钟汇才  朱开贵  苟成玲 《物理学报》2015,64(24):247504-247504
研究了Mo覆盖层厚度对MgO/CoFeB结构磁各向异性的影响. 研究发现, 加平行磁场生长出来的MgO/CoFeB/Mo样品表现为面内各向异性, 并且随着CoFeB的厚度减小, 面内各向异性逐渐减弱; 在CoFeB厚度减小到1.1 nm时, 仍可以保持面内各向异性, 垂直方向的外加饱和场逐渐减少; 厚度在0.9 nm及以下的情况下, 面内各向异性消失. 改变Mo覆盖层厚度, 当tMo= 1.6 nm时, 垂直方向的饱和场最小. 当生长过程的磁场变为垂直磁场时, 不同厚度的Mo覆盖层对MgO/CoFeB 的磁各向异性影响不同. Mo厚度在1 nm及以下时MgO/CoFeB/Mo样品表现为面内各向异性, Mo覆盖层厚度在1.2和5 nm之间时样品出现了垂直磁各向异性; 并且垂直方向的矫顽力也发生了变化, Mo覆盖层厚度为1.4 nm时样品的磁滞损耗会大一些.  相似文献   

20.
Summary A series of ultrathin Fe/Pt multilayers, prepared by magnetron sputtering, were studied by CEMS and transmission MS. The Fe-layer thickness varied from 3 to 12.5 ? and that of Pt from 5 ? to 39 ?. The 3 ?/9 ? Pt sample displays magnetic hyperfine structure at RT, while the 3 Fe/19 Pt sample is paramagnetic at RT, demonstrating the effect of interlayer interaction. Both samples display out-of-plane magnetic anisotropy with 39° angle with respect to the vertical for the former and nearly 0° angle for the latter. The analysis of the spectra of samples with thickness larger than one monolayer of Fe is done with components assigned to individual Fe monolayers. In all these cases a component appears with a hyperfine field larger by ∼ 10% at RT and 17% at L.He than the corresponding values of α-Fe. This component is attributed to the first monolayer below the Fe/Pt interface in accordance with similar results in the Fe/Pd system and with theoretical predictions. Paper presented at ICAME-95, Rimini, 10–16, September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号