首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
反胶团相转移法提取青霉素G的研究   总被引:5,自引:1,他引:5  
报道了非蛋白质类活性物质青霉素G在反胶团相转移提取中的特性和机理。结果表明,青霉素G在CTAB/正辛醇:氯仿(4:1,V/V)反胶团体系中的相转移提取为离子对静电作用与胶团溶解机理;在室温及pH值5~8的条件下,提取率在90%以上,且保持了青霉素的稳定性。  相似文献   

2.
10-十一烯酸衍生物混合体系有序溶液与聚集体研究   总被引:1,自引:1,他引:0  
对三甲基-[2-(10-十一烯酰氧乙基)]碘化铵CH2=CH(CH2)8COOCH2CH2N(CH3)3I和N,N-[2-(10-十一烯酰甲基牛磺酸钠)]CH2=CH(CH2)8CON(CH3)CH2CH2SO3Na的表面及聚集行为进行了研究。混合体系溶解度良好,在40cmc时仍为稳定胶团溶液。结合正规溶液理论计算了混合体系表面吸附层、胶团的组成及分子间作用参数。基于两亲分子几何结构及分子间相互作用原理对上述现象进行了合理解释,发现了少量长链脂肪醇促使正负离子表面活性剂混合胶团转化为囊泡的新现象。  相似文献   

3.
介绍了在利用CTAB/正辛醇:三氯甲烷(4:1V/V)反胶团体系对牛血清白蛋白(BSA)进行相转移中,通过对萃取体系水相的pH值、离子强度、两液相的体积比、小分子糖(葡萄糖、蔗糖)及助表面活性剂(直链醇分子)等因素的改变,探讨了BSA在阳离子表面活性剂体系的萃取机理;研究结果表明选择合适的条件提取BSA时,萃取率可达到97%,反萃率达到了85%;找到实现牛血清白蛋白分离提纯的有效方法。  相似文献   

4.
环糊精与表面活性剂的相互作用已有许多研究,但多局限于β-环糊精(β-CD),而修饰的β-环糊精与表面活性剂的相互作用研究较少[1-3].分子内扭转电荷转移(TICT)激发态对介质极性高度敏感性,已成功地用于探针环糊精与表面活性剂的相互作用[4].研究表明,β-CD能够诱  相似文献   

5.
采用动态光散射、吸收光谱、粘度及电镜透射等方法研究了烷基氯化铵在弱碱性条件下溶液浓度变化对分子有序组合体结构的影响.当表面活性剂浓度大于cmc时,分子有序组合体的形态随表面活性剂浓度的增加出现胶团-囊泡-球状胶团的转化过程,这与水解产生的极性有机物烷基胺量的变化密切相关.  相似文献   

6.
高效疏水作用色谱(HPHIC)是利用不同蛋白质表面疏水区域与填料之间具有不同疏水作用进行分离的.由于HPHIC采用盐水体系作为流动相,配体采用极性的有机基团,使蛋白质可以在十分温和的条件下进行分离,且保持其生物活性基本不变[1,2].自80年代中期以来,HPHIC在蛋白质的分离纯化上得到了广泛的应用.在90年代初期,随着基因工程技术的发展,HPHIC同时也被应用到基因工程的下游纯化技术上[3,4].本文中我们合成了一OCH2CH3为端基的填料,检验了该填料的分离效果,并利用该填料对酵母菌表达的人αA-干扰素、大肠杆菌(E.col…  相似文献   

7.
十二烷基季铵盐及其与十二烷基硫酸钠混合体系的表面活性   总被引:13,自引:0,他引:13  
通过表面张力测定,研究了十二烷基季铵盐C12H25N(CnH2n+1)3Br(n=1,2,3,4)及其与十二烷基硫酸钠混合体系的表面活性,应用规则溶液理论,计算了混合体系表面吸附层和胶团的组成及分子相互作用参数,对于季铵盐、极性基影响大:cmc随n增加而下降,γcmc则先上升,后下降,自极性基碳链的空间阻碍、疏水、弯曲效应,以及电荷屏蔽效应可对此予以解释,对于混合体系,极性基大小对其表面活性及胶团  相似文献   

8.
AEOT/异辛烷/水反胶团体系对血红蛋白的提取   总被引:5,自引:0,他引:5  
自Riet等报道以反胶团技术提取蛋白质以来,有关反胶团技术提取生物活性物质的报道较多,但研究对象多为分子量较小的蛋白质及酶.由表面活性剂丁二酸二(2-乙基己基)酯磺酸钠(AOT)形成的反胶团体系水含量W0,有机相中水的摩尔浓度与表面活性剂摩尔浓度之比)较小,提取率偏低.  相似文献   

9.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

10.
本文研究了烷基磷(膦)酸萃取剂钠盐NaEHEHP,NaDTMPP,Na2(MEHP)与非离子表面活性剂AEO9以不同比例复配后水溶液胶团的形成及分子间的相互作用结果表明混合胶团的形成使CMC大大降低,分子间在胶团中的相互中弱为,Na2(MEHP)体系〉NaDTMPP体系〉NaEHEHP体系,分子间在表面层的作用小于同体系分子间在胶团中的相互作用,这一结果有利于混合胶团的形成。  相似文献   

11.
Surfactantscanformreversemicellesinapolarsolventsatsuitableconditions.Theinnerpolarcoresofthereversemicellescannotonlyhostsignificantamountofwater,butalsosolubilizepolarsolutesofdifferentsizes,suchasproteins'.Reversemicelleshavemanyapplicationsinbiotechnology.DifferentmethodshavebeenusedtocontrolproteinsolubilizationinreversemicellesinextractionandreextTactionprocesses,suchaschangingtheionicstrengthand/orPHoftheaqueousphasescontactingwiththeorganicsolventcontinuousphase',andforminggashydrates…  相似文献   

12.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

13.
Electrochemical extraction of proteins by reverse micelle formation   总被引:1,自引:0,他引:1  
The transfer of proteins by the anionic surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) at a polarized 1,2-dichloroethane/water (DCE/W) interface was investigated by means of ion-transfer voltammetry. When the tetrapentylammonium salt of AOT was added to the DCE phase, the facilitated transfer of certain proteins, including cytochrome c (Cyt c), ribonuclease A, and protamine, could be controlled electrochemically, and a well-defined anodic wave for the transfer was obtained. At low pH values (e.g., pH 3.4), the anodic wave was usually well-separated from the wave for the formation of protein-free (i.e., unfilled) reverse micelles. The anodic wave for the protein transfer was analyzed by applying the theory for facilitated transfer of ions by charged ligands and then supplying information regarding the number of AOT anions reacting with one protein molecule and the total charge carried by the protein transfer. However, controlled-potential electrolyses performed for the transfer of Cyt c, which is red, revealed that the protein-AOT complexes were unstable in DCE and liable to aggregate at the interface when the pH of the W phase was 3.4. At pH 7.0, when formation of unfilled reverse micelles occurred simultaneously, the protein-AOT complexes appeared to be stabilized, probably via fusion with unfilled reverse micelles.  相似文献   

14.
The effect of dissolved CO(2) and CHF(3) on the precipitation of bovine serum albumin (BSA) from reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in 2,2,4-trimethylpentane (iso-octane) has been studied at 308.15 K. It was found that BSA can be precipitated completely by CO(2) while the AOT and water remain in the iso-octane continuous phase. This opens up a possibility for recovery of protein solids directly from reverse micellar solutions. CHF(3) is also an effective agent for precipitation of BSA in the reverse micelles when the expansion coefficient of CHF(3) exceeds 0.4. However, the condition required for complete removal of the BSA using CHF(3) results in some precipitation of AOT and water from the solution. Copyright 2000 Academic Press.  相似文献   

15.
The thermostability of Cromobacterium viscosum lipase (EC 3.1.1.3) entrapped in AOT (sodium bis-[2-ethylhexyl] sulfosuccinate) reverse micelles was increased by the addition of short-chain polyethylene glycol (PEG 400). Two different approaches were considered: (1) the determination of half-life time and (2) the mechanistic analysis of deactivation kinetics. The half-life of lipase entrapped in AOT/isooctane reverse micelles with PEG 400 at 60 degrees C was 28 h, ninefold higher than that in reverse micelles without PEG 400. The lipase entrapped in both reverse micellar systems followed a series-type deactivation mechanism involving two first-order steps. The deactivation constant for the first step at 60 degrees C in PEG containing reverse micelles was 0.055 h!1, 11-fold lower than that in reverse micelles without PEG, whereas it remained almost constant for the second step. The inactivation energy of the lipase entrapped in reverse micelles with and without PEG 400 was 88.12 and 21.97 kJ/mol, respectively.  相似文献   

16.
The effect of compressed CO2 on the solubilization of bovine serum albumin (BSA) in water/sodium bis-(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles was studied by observing phase behavior and recording UV-visible spectra under different conditions. The pH values within the water cores of reverse micelles at different CO2 pressures were also determined. The solubilization capacity of the reverse micelles for the protein increased considerably as CO2 pressure increased within the low-pressure range, but decreased at higher CO2 pressures, so that the micelles eventually lost their ability to solubilize the protein. The effect of CO2 on the stability of the reverse micelles played an important role in the relationship between pressure and protein solubility. A "multicomplex" model was proposed to explain these effects. The different solublization capacities within different pressure ranges demonstrates the unique advantage of using compressed CO2 in the extraction of proteins with reverse micelles.  相似文献   

17.
Using bis(2-ethylhexyl) sodium sulfosuccinate (AOT) as surfactant, two amphiphilic porphyrin terminated with imidazole were studied in AOT/iso-octane/water reverse miceUes,intending to mimic the relationship between microenvirouments in organism and the amphiphilic properties of porphyrins for photodynamic therapy drugs.  相似文献   

18.
Enzyme-mediated catalysis is attributed to enzyme–substrate interactions, with models such as “induced fit” and “conformational selection” emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the “conformational selection” fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an “induced fit” mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of “conformational selection”, whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an “induced fit” mechanism for the formation of the final enzyme–substrate complex. The role of water dynamics in dictating the mechanism of enzyme–substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the “conformational selection” pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the “induced fit” mechanism in the enzyme–substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.  相似文献   

19.
The reverse micellar system of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane was used for the extraction and primary purification of beta-galactosidase (EC 3.2.1.23) from the aqueous extract of barley (Hordeum vulgare) for the first time. The process parameters such as the concentration of the surfactant, the volume of the sample injected, and its protein concentration, pH, and ionic strength of the initial aqueous phase for forward extraction, buffer pH, and salt concentration for back extraction are varied to optimize the extraction efficiency. Studies carried out with both phase transfer and injection mode of reverse micellar extraction confirmed the injection mode to be more suitable for beta-galactosidase extraction. The extent of reverse micellar solubilization of proteins increased with an increase in protein concentration of the feed sample. However, back extraction efficiency remained almost constant (13-14.4%), which indicates the selectivity of AOT reverse micelles for a particular protein under given experimental conditions. beta-Galactosidase was extracted with an activity recovery of 98.74% and a degree of purification of 7.2-fold.  相似文献   

20.
AEOT反胶束中脂肪酶的催化活性   总被引:5,自引:0,他引:5  
反胶束已广泛应用于膜模拟化学和蛋白质的液 液萃取中[1~ 3] ,反胶束酶反应作为实现有机相酶催化的方法之一 ,具有许多独特的优点 ,反胶束独特的结构特征使表面活性剂分子组成的膜将油水相隔开 ,从而有利于保持酶的活性和稳定性。酶在反胶束的微水环境中比在水溶液中更接近天然的细胞内环境 ,在这里酶和底物分子均可得到有效的分散 ,接触几率大大提高 ,因而催化效率也得到很大提高。反胶束可以适用于各种类型的 (亲水的、疏水的和双亲的 )底物[4] ,已逐步形成“胶束酶学”的研究分支 ,研究胶束酶学的Martinek等[3] 曾预言 :反胶束体系有可…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号