首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
计算微裂纹损伤材料有效模量的一种简单方法   总被引:7,自引:0,他引:7  
冯西桥  余寿文 《力学学报》2001,33(1):102-108
给出了一种基于Taylor模型的有效介质方法。用以计算微裂纹相互作用对有效本构关系的影响,该方法假设每一个微裂纹位于一种有效介质之中,该有效介质的弹性模量由不考虑微裂纹相互作用的Taylor模型计算、和自洽方法相比,这种方法计算简单,而且结果更准确。  相似文献   

2.
A micromechanics-based model is proposed to describe unstable damage evolution in microcrack-weakened brittle rock material. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress–strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to be consistent with the experimental results.  相似文献   

3.
A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

4.
The effects of microcrack interaction on the failure behavior of materials present one problem of considerable interest in micromechanics, which has been extensively argued but has not been resolved as yet. In the present paper, a simple and effective method is presented based on the concept of the effective field to analyze the interaction of microcracks of a large number or of a high density. To determine the stress intensity factors of a microcrack embedded in a solid containing numerous or even countless microcracks, the solid is divided into two regions. The interaction of microcracks in a circular or elliptical region around the considered microcrack is calculated directly by using Kachanov’s micromechanics method, while the influence of all other microcracks is reflected by modifying the stress applied in the far field. Both the cases of tensile and compressive loading are considered. This simplified scheme may yield an estimate for stress intensity factors of satisfactory accuracy, and therefore provide a potential tool for elucidating some phenomena of material failure associated with microcracking. As two of its various promising applications, the above scheme is employed to investigate the size effects of material strength due to stochastic distribution of interacting microcracks and to calculate the effective elastic moduli of elastic solids containing distributed microcracks. Some conventional micromechanics methods for estimating the effective moduli of microcracked materials are evaluated by comparing with the numerical results. Only two-dimensional problems have been considered here, though the three-dimensional extension of the present method is of greater interest.  相似文献   

5.
闫相桥 《力学学报》2006,38(1):112-117
提出了平面弹性介质中主裂纹与微裂纹相互作用问题的有效数值计算 方法. 通过把适于单一裂纹的Bueckner原理扩充到含有多裂纹的一般体系,将原问题分解 为承受远处载荷不含裂纹的均匀问题,和在远处不承受载荷但在裂纹面上承受面力的多裂纹 问题. 于是,以应力强度因子作为参量的问题可以通过考虑后者(多裂纹问题)来解决,而 利用提出的杂交位移不连续法,这种多裂纹问题是容易数值求解的. 列举 Cai和 Faber为评价主裂纹与微裂纹相互作用问题的近似方法而列举的算例,说明 该数值方法对分析平面弹性介质中主裂纹与微裂纹相互作用问题既简单又非常有效.  相似文献   

6.
One of fundamental but difficult problems in damage mechanics is the formulation of the effective constitutive relation of microcrack-weakened brittle or quasi-brittle materials under complex loading, especially when microcrack interaction is taken into account. The combination of phenomenological and micromechanical damage mechanics is a promising approach to constructing an applicable damage model with a firm physical foundation. In this paper, a quasi-micromechanical model is presented for simulating the constitutive response of microcrack-weakened materials under complex loading. The microcracking damage is characterized in terms of the orientation domain of microcrack growth (DMG) as well as a scalar microcrack density parameter. The DMG describes the complex damage and its evolution associated with microcrack growth, while the scalar microcrack density factor defining the isotropic magnitude of damage yields an easy calculation of the effects of microcrack interaction on effective elastic moduli. Project supported by the National Natural Science Foundation of China (19891180).  相似文献   

7.
Summary  Most of the conventional methods for estimating the overall elastic moduli of microcracked solids are defined based on the concept of effective medium or effective field. The formal similarity of these methods is examined in this paper. A one-to-one correspondence relation exists between the effective medium methods and the effective field methods in the sense that they yield identical results. In addition to the conventional estimation techniques, any other number of such approaches may be constructed by appropriately specifying the effective matrix compliance (or stiffness) tensor and the effective stress (or strain) field which a microcrack is assumed to be subjected to. To generate continuous spectra of new methods for estimating the effective elastic moduli, two simple and straightforward approaches are proposed, which contain one or two adjustable parameters in order to yield results of good accuracy. The discussion in this paper can be extended to other kinds of heterogeneous materials. Received 4 October 2000; accepted for publication 30 January 2001  相似文献   

8.
The static interaction problem between an elastic plate and infinite medium is studied by the semi-numerical (in one direction) and semi-analytical (in two directions) method-semianalytical element method, a simple practical and effective method for coupled analysis between above-ground structure and infinite soil medium with complex material character in engineering.  相似文献   

9.
本文采用一维离散、二维解析的半解析单元法研究弹性薄板与无限介质静力相互作用问题,为工程上解决具有复杂材料特性的无限土体介质与明置结构的耦联分析提供一种简便、实用、有效的方法。文中还对耦联问题中介质特性效应、相对刚度效应、板件形状效应、土层深度效应以及非均质性影响等作了较为全面的分析。  相似文献   

10.
Considered is the interaction of macro-and micro-cracks in an anisotropic piezoelectric solid. The Green’s function and principle of superposition are used to formulate a system of singular integral equations for solving the unknown temperature discontinuity and elastic displacement-electric potential. The residual heat flux, stress and electric displacement on the microcrack are evaluated directly from the near-tip field of main crack. Numerical results for stress and electric displacement intensity factors in a three-crack system are obtained to illustrate the application of the method.  相似文献   

11.
带微裂纹物体的有效断裂韧性   总被引:4,自引:0,他引:4  
按照等效介质的思想,引进有效表面能密度的概念,建立了带微裂纹物体有效断裂韧性的公式.具体计算了微裂纹群分别平行和垂直于宏观裂纹两种情况的减韧比.表明微裂纹群在产生应力屏蔽(或反屏蔽)效应的同时,也降低了材料的有效断裂韧性,减小了对宏观裂纹的扩展阻力.  相似文献   

12.
Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.  相似文献   

13.
A micromechanical model for cementitious composite materials is described in which microcrack initiation, in the interfacial transition zone between aggregate particles and cement matrix, is governed by an exterior-point Eshelby solution. The model assumes a two-phase elastic composite, derived from an Eshelby solution and the Mori–Tanaka homogenization method, to which circular microcracks are added. A multi-component rough crack contact model is employed to simulate normal and shear behaviour of rough microcrack surfaces. The development of the microcrack initiation criterion and the rules adopted for microcrack evolution are a particular focus of the paper. Finally, it is shown, on the basis of several numerical simulations, that the model captures key characteristics of the behaviour of cementitious composites such as concrete.  相似文献   

14.
陈宜亨  赵利果 《力学学报》1997,29(3):359-364
用理论推导和电算实践证明,尽管两相材料界面裂纹J积分的显函数表达式与均质材料中不同,尽管界面裂纹尖端固有的 1/2+iε振荡奇异性和张开滑移型固有的耦合造成近尖区应力场分布的复杂性,但作者在均质材料微裂纹屏蔽问题中发现的J积分再分配关系 Jk矢量投影守恒定理在两相材料界面微裂纹屏蔽问题中仍然成立.这再次说明,远场J积分向界面裂纹尖端传递过程中跨越微裂纹群是有损失的.这个损失可用Jk矢量在界面裂纹延线坐标轴上的投影来定量地评估  相似文献   

15.
Summary  The problem of the extension of subinterface microcracks in an infinite metal/ceramic bimaterial solid is studied. For the microcrack growth, the values of the M-integral are calculated under the assumption of a self-similar growth. First, the role that the M-integral plays in a metal/ceramic bimaterial solid with growing subinterface cracks is analyzed. It is concluded that an inherent relation exists between the value of the M-integral and the decrease of the effective elastic moduli for a bimaterial solid with growing subinterface microcracks. Second, it is concluded that mutual amplification and shielding effects exist during the microcrack extension, while they are substantially dependent on the increment of the microcrack length as well as the geometry of the microcrack arrangement under given loads. This strong mutual shielding effect of interacting microcracks makes the microcrack extension become increasingly difficult, and may stop the growth of the microcracks even under constant loads. Also, it is concluded that for a certain microcrack growth, the value of the M-integral in metal/ceramic bimaterial solid is always larger than that in homogeneous brittle solid for the same crack configuration. This means that the same microcrack growth in the former case shows lower stability than that in the latter one, due to the existence of a ductile phase. Received 3 May 2001; accepted for publication 27 June 2002 This work was supported by the Chinese National Nature Science Foundation (Grant 19472053) and supported by the Doctorate Foundation of Xi'an Jiaotong University (Grant DFXJU2000-15).  相似文献   

16.
The dynamic interaction problems of three-dimensional linear elastic structures witharbitrary shaped section embedded in a homogeneous,isotropic and linear elastic half spaceunder dynamic disturbances are numerically solved.The numerical method employed is acombination of the time domain semi-analytical boundary element method(SBEM)usedfor the semi-infinite soil medium and the semi-analytical finite element method(SFEM)used for the three-dimensional structure.The two methods are combined throughequilibrium and compatibility conditions at the soil-structure interface.Displacements,velocities,accelerations and interaction forces at the interface between undergroundstructure and soil medium produced by the diffraction of wave by an underground structurefor every time step are obtained.In dynamic soil-structure interaction problems,it isadvantageous to combine the SBEM and the SFEM in an effort to produce an optimumnumerical hybrid scheme which is characterized by the main advantages of the two methods.The  相似文献   

17.
左宏  陈宜亨 《力学学报》1999,31(4):493-497
通过对微裂纹屏蔽不同来源的分析及计算,发现在各向同性脆性材料中,残余应力释放引起的微裂纹对主裂尖产生最大屏蔽效应时该微裂纹的倾角与最大张应力的方向没有明显的对应关系.在Hutchinson[1]所指出的屏蔽效应的第二个来源中,还应计及微裂纹形成引起的远场应力在微裂纹处产生的应力场的释放从而导致应力场的再分布.  相似文献   

18.
The problem to determine the effective elastic moduli and velocities of elastic wave propagation in transversely isotropic solid containing aligned spheroidal inhomogeneities (solid grains, vugs and micro-cracks) has been solved using the self-consistent scheme known as effective medium approximation (EMA). Since a solution of so-called one-particle problem is a base for each self-consistent method, we solved this problem as a first step for spheroidal inhomogeneity in a transversely isotropic medium. In contrast to the known solution of this problem by Lin and Mura we obtained the expressions for the strain field inside inclusion in the explicit form (without quadratures). The obtained solution was used then in the symmetric variant of the EMA where each component of the system was considered as spheroid with its own aspect ratio. This approach was applied to simulate the properties of the rocks containing isolated pores and micro-cracks. For connected fluid-filled pores we used the anisotropic variant of the Gassmann theory. The results of the calculations, obtained for the effective elastic moduli, have been compared with the experimental data and theoretical simulations of the other authors. Unlike many other rock mechanics theories, EMA approximation gives correct elastic moduli values even in the nondilute concentration of inhomogeneities. The comparison of the experimental data for oriented crack system with the EMA predictions indicates their good correspondence.  相似文献   

19.
The interaction of an elastic ellipsoidal inclusion with an elliptic crack in an infinite elastic medium under triaxial loading is analyzed. The stress state in the elastic space is represented as a superposition of the principal state and perturbed states, which are due to the presence and interaction of the inclusion and the crack. The analytical solution of the problem is found using the method of equivalent inclusion, the potential of an inhomogeneous ellipsoid, and a system of harmonic functions for an elliptic crack. The effect of triaxial loading on the stress intensity factors is analyzed  相似文献   

20.
Investigated is a crack problem for an array of collinear microcracks in composite matrix. Inclusions are situated in between the neighbouring microcracks tips and exhibit different elastic properties than matrix. The problem is solved using the technique of distributed dislocations. A developed approximate fundamental solution for a single dislocation lying in a general point between inclusions is employed in the distribution of continuously distributed dislocation to cracks modelling. Stress intensity factor is calculated for various cracks/inclusions geometries and elastic moduli mismatches. Stability and/or instability of the straight microcrack paths is investigated for slowly growing microcracks with inclusions located in between the neighbouring microcracks tips. Applications to periodic microcrack tunnelling and microcracks weakening ahead of the main crack are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号