首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor.  相似文献   

2.
A mode-coupling treatment of polar solvation dynamics in supercritical fluids is presented. The equilibrium solvation time correlation function for the solute fluctuating transition frequency is obtained from the mode-coupling theory method and from molecular-dynamics simulations. The theory is shown to be in good agreement with the simulation. The solvation time correlation function exhibits three distinct time scales, with rapid initial decay, followed by a recurrence at intermediate times, and a slowly decaying long-time tail. Our theoretical analysis shows that the short-time decay arises from the coupling of the solute energy gap to the solvent polarization modes, the recurrence at intermediate times is due to the energy modes, while the slow long-time decay reflects the coupling to the number density modes.  相似文献   

3.
The vast majority of molecular dynamics simulations are based on nonpolarizable force fields with fixed partial charges for all atoms. The traditional way to obtain these charges are quantum-mechanical calculations performed prior to simulation. Unfortunately, the set of the partial charges heavily relies on the method and the basis set used. Therefore, investigations of the influence of charge variation on simulation data are necessary in order to validate various charge sets. This paper elucidates the consequences of different charge sets on the structure and dynamics of the ionic liquid: 1-ethyl-3-methyl-imidazolium dicyanoamide. The structural features seem to be more or less independent of the partial charge set pointing to a dominance of shape force as modeled by Lennard-Jones parameters. This can be seen in the radial distribution and orientational correlation functions. The role of electrostatic forces comes in when studying dynamical properties. Here, significant deviations between different charge sets can be observed. Overall, dynamics seems to be governed by viscosity. In fact, all dynamical parameters presented in this work can be converted from one charge set to another by viscosity scaling.  相似文献   

4.
The excited-state dynamics of covalently linked electron donor-acceptor systems consisting of N, N-dimethylaniline (DMA) as electron donor and either perylene (Pe) or cyanoperylene (CNPe) as acceptor has been investigated in a large variety of solvents, including a room-temperature ionic liquid, by using femtosecond time-resolved fluorescence and absorption spectroscopy. The negligibly small solvent dependence of the absorption spectrum of both compounds and the strong solvatochromism of the fluorescence are interpreted by a model where optical excitation results in the population of a locally excited state (LES) and emission takes place from a charge-separated state (CSS). This interpretation is supported by the fluorescence up-conversion and the transient absorption measurements that reveal substantial spectral dynamics in polar solvents only, occurring on time scales going from a few hundreds of femtoseconds in acetonitrile to several tens of picoseconds in the ionic liquid. The early transient absorption spectra are similar to those found in nonpolar solvents and are ascribed to the LES absorption. The late spectra due to CSS absorption show bands that are red-shifted relative to those of the radical anion of the acceptor moiety by an amount that depends on solvent polarity, pointing to partial charge separation. Global analysis of the time-resolved data indicates that the charge separation dynamics in PeDMA is essentially solvent controlled, whereas that in CNPeDMA is faster than diffusive solvation, this difference being accounted for by a larger driving force for charge separation in the latter. On the other hand, the CSS lifetime of PeDMA is of the order of a few nanoseconds independently of the solvent, whereas that of CNPeDMA decreases with increasing solvent polarity from a few nanoseconds to a few hundreds of picoseconds. Comparison of these results with previously published data on the fluorescence quenching of Pe and CNPe in pure DMA shows that the charge separation and the ensuing charge recombination occur on similar time scales independently of whether these processes are intra- or intermolecular.  相似文献   

5.
We present molecular dynamics simulations of the air-liquid interface for three room temperature ionic liquids with a common anion: bis(trifluoromethylsulfonyl) imide ([Tf(2)N]), and imidazolium-based cations that differ in the alkyl tail length: 1-butyl-3-methylimidazolium ([C(4)mim]), 1-hexyl-3-methylimidazolium ([C(6)mim]), and 1-octyl-3-methylimidazolium ([C(8)mim]). The CHARMM type force field is used with the partial charges based on quantum calculations for isolated ion pairs. The total charge on cations and anions is around 0.9e and -0.9e, respectively, which somewhat mimics the anion to cation charge transfer and many-body effects. The surface tension at 300 K is computed using the mechanical route and its value slightly overpredicts experimental values. The air-liquid interface is analyzed using the intrinsic method of Identification of the Truly Interfacial Molecules. Structural and dynamic properties of the interfacial, sub-interfacial and central layers are determined. To describe the structure of the interface, we compute the surface roughness, number density and charge density profiles, and orientation ordering of the ions. We further determine the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to characterize the dynamics of the cations and anions in the layers. We found a significant enhancement of the cation density and preferential orientation ordering of both the cations and anions at the interface. Overall, the surface of the interfacial layer is smoother than the surface of the sub-interfacial layer and the roughness of both the interfacial and sub-interfacial layers increases with the increase of the length of the cation alkyl tail. Finally, the ions stay considerably longer in the interfacial layer than in the sub-interfacial layer and dynamics of exchange of the ions between the consecutive layers is related to the distinct diffusion and re-orientation dynamics behavior of the ions within the layers.  相似文献   

6.
The variation of atomic charges upon proton transfer in hydrogen bonding complexes of 4-methylimidazole, in both neutral and protonated cationic forms, and acetate anion, is investigated. These complexes model the histidine (neutral and protonated)-aspartate pair present in active sites of proteases where strong N--H...O hydrogen bonds are formed. Three procedures (Merz-Kollman scheme, Natural Population Analysis, and Atoms in Molecules Method) are used to compute atomic charges and explore their variation upon H-transfer in the gas phase and in the presence of two continuum media with dielectric constants 5 (protein interiors) and 78.39 (water). The effect of electron correlation was also studied by comparing Hartree-Fock and MP2 results for both complexes in the gas phase. Greater net charge interchanged upon H-transfer is observed in the anionic complex with respect to the neutral complex. Raising the polarity of the medium increases the amount of net charge transfer in both complexes, although the neutral system exhibits a larger sensitivity to the presence of solvent. Charge transfer associated to N--H...O and N...H--O bonds reveal the ionic contribution to the interaction depending on the number of charged subunits but the presence of solvent affects little this quantity. The lack of electron correlation overestimates all the charges as well as their variations and so uncorrelated calculations should be avoided.  相似文献   

7.
The dynamical properties of the polymer electrolyte poly(ethylene oxide) (PEO)LiClO(4) have been investigated by molecular dynamics simulations. The effect of changing salt concentration and temperature was evaluated on several time correlation functions. Ionic displacements projected on different directions reveal anisotropy in short-time (rattling) and long-time (diffusive) dynamics of Li(+) cations. It is shown that ionic mobility is coupled to the segmental motion of the polymeric chain. Structural relaxation is probed by the intermediate scattering function F(k,t) at several wave vectors. Good agreement was found between calculated and experimental F(k,t) for pure PEO. A remarkable slowing down of polymer relaxation is observed upon addition of the salt. The ionic conductivity estimated by the Nernst-Einstein equation is approximately ten times higher than the actual conductivity calculated by the time correlation function of charge current.  相似文献   

8.
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer.  相似文献   

9.
In this paper, the dynamical properties of the electrochemical double layer following an electron transfer are investigated by using Brownian dynamics simulations. This work is motivated by recent developments in ultrafast cyclic voltammetry which allow nanosecond time scales to be reached. A simple model of an electrochemical cell is developed by considering a 1:1 supporting electrolyte between two parallel walls carrying opposite surface charges, representing the electrodes; the solution also contains two neutral solutes representing the electroactive species. Equilibrium Brownian dynamics simulations of this system are performed. To mimic electron transfer processes at the electrode, the charge of the electroactive species are suddenly changed, and the subsequent relaxation of the surrounding ionic atmosphere are followed, using nonequilibrium Brownian dynamics. The electrostatic potential created in the center of the electroactive species by other ions is found to have an exponential decay which allows the evaluation of a characteristic relaxation time. The influence of the surface charge and of the electrolyte concentration on this time is discussed, for several conditions that mirror the ones of classical electrochemical experiments. The computed relaxation time of the double layer in aqueous solutions is found in the range 0.1 to 0.4 ns for electrolyte concentrations between 0.1 and 1 mol L(-1) and surface charges between 0.032 and 0.128 C m(-2).  相似文献   

10.
Solvation in 1-ethyl-3-methylmidazolium chloride and in 1-ethyl-3-methylimidazolium hexafluorophosphate near equilibrium is investigated via molecular dynamics computer simulations with diatomic and benzenelike molecules employed as probe solutes. It is found that electrostriction plays an important role in both solvation structure and free energetics. The angular and radial distributions of cations and anions become more structured and their densities near the solute become enhanced as the solute charge separation grows. Due to the enhancement in structural rigidity induced by electrostriction, the force constant associated with solvent configuration fluctuations relevant to charge shift and transfer processes is also found to increase. The effective polarity and reorganization free energies of these ionic liquids are analyzed and compared with those of highly polar acetonitrile. Their screening behavior of electric charges is also investigated.  相似文献   

11.
12.
Nanoparticle self-assembly at liquid-liquid interfaces can be significantly affected by the individual nanoparticle charges. This is particularly true at ionic liquid (IL) based interfaces, where Coulombic forces play a major role. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) as a model IL, we have studied the self-assembly of hydrophobic nanoparticles with different surface charges at the IL/water and IL/oil (hexane) interfaces using molecular dynamics simulations. In the IL/water system, the nanoparticles were initially dispersed in the water phase but quickly equilibrated at the interface, somewhat in favor of the IL phase. This preference was lessened with increased nanoparticle charge. In the IL/hexane system, all charged nanoparticles interacted with the IL to some extent, whereas the uncharged nanoparticles remained primarily in the hexane phase. Potential of mean force calculations supported the observations from the equilibrium studies and provided new insights into the interactions of the nanoparticles and ionic liquid based interfaces.  相似文献   

13.
Molecular ionic liquids are typically characterized by strong electrostatic interactions resulting in a charge ordering and retardation of their translational and rotational behaviour. Unfortunately, this effect is often overestimated in classical molecular dynamics simulations. This can be circumvented in a twofold way: the easiest way is to reduce the partial charges of the ions to sub-integer values of ±0.7-0.9 e. The more realistic model is to include polarizable forces, e.g. Drude-oscillators, but it comes along with an increasing computational effort. On the other hand, charge-scaled models are claimed to take an average polarizability into account. But do both models have the same impact on structure and dynamics of molecular ionic liquids? In the present study several molecular dynamics simulations of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate are performed with different levels of polarization as well as with varying charge scaling factors of 0.74 to 0.90. The analysis of the structural and dynamical results are performed in different levels: from the atomic point of view over the molecular level to collective properties determined by the complete sample.  相似文献   

14.
We report herein a study of the solvent reorganization process in an electron transfer reaction. The calculations are based on a model consisting of 26 or 62 solvent particles. Molecular dynamics simulations are performed to calculate the electric field fluctuations during the orientational and translational motion of the solvent molecules. The changes in the electric fields at various points near the reacting sites in the system are evaluated as a function of time. From these electric fields, electric field time correlation functions are calculated. The main conclusion in this work is that it requires nearly 3 ps for the model solvent to reorient during the charge transfer. These results suggest ways of incorporating solvent dynamics based on molecular models into theoretical studies of electron transfer rates in condensed media.  相似文献   

15.
The dependence of the thin film morphology and excited-state dynamics for the low-bandgap donor-acceptor copolymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) in pristine films and in blends (1:2) with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) on the use of the solvent additive 1,8-octanedithiol (ODT) is studied by solid-state nuclear magnetic resonance (NMR) spectroscopy and broadband visible and near-infrared pump-probe transient absorption spectroscopy (TAS) covering a spectral range from 500-2000 nm. The latter allows monitoring of the dynamics of excitons, bound interfacial charge-transfer (CT) states, and free charge carriers over a time range from femto- to microseconds. The broadband pump-probe experiments reveal that excitons are not only generated in the polymer but also in PCBM-rich domains. Depending on the morphology controlled by the use of solvent additives, polymer excitons undergo mainly ultrafast dissociation (<100 fs) in blends prepared without ODT or diffusion-limited dissociation in samples prepared with ODT. Excitons generated in PCBM diffuse slowly to the interface in both samples and undergo dissociation on a time scale of several tens of picoseconds up to hundreds of picoseconds. In both samples a significant fraction of the excitons creates strongly bound interfacial CT states, which exhibit subnanosecond geminate recombination. The total internal quantum efficiency loss due to geminate recombination is estimated to be 50% in samples prepared without ODT and is found to be reduced to 30% with ODT, indicating that more free charges are generated in samples prepared with solvent additives. In samples prepared with ODT, the free charges exhibit clear intensity-dependent recombination dynamics, which can be modeled by Langevin-type recombination with a bimolecular recombination coefficient of 6.3 × 10(-11) cm(3) s(-1). In samples prepared without ODT, an additional nanosecond recombination of polaron pairs is observed in conjunction with an increased intensity-independent trap-assisted nongeminate recombination of charges. Furthermore, a comparison of the triplet-induced absorption spectra of PCPDTBT with the charge-induced absorption in PCPDTBT:PCBM blends reveals that triplets have a very similar excited-state absorption spectrum compared to the free charge carriers, however, in contrast have a distinct intensity-independent lifetime. Overall, our results suggest that whether free charges or strongly bound CT states are created upon dissociation of excitons at the PCPDTBT:PCBM interface is determined instantaneously upon exciton dissociation and that once formed strongly bound CT states rapidly recombine and thus are unlikely to dissociate into free charges. The observation of a significantly larger bimolecular recombination coefficient than previously determined for poly(3-hexylthiophen-2,5-diyl):PCBM (P3HT:PCBM) and PCDTBT:PCBM samples indicates that nongeminate recombination of free charges considerably competes with charge extraction in PCPDTBT:PCBM photovoltaic devices.  相似文献   

16.
We report molecular dynamics (MD) simulations of the solvation dynamics of Coumarin 153 in liquid dimethylsulfoxide using two distinct sets of partial charges for the coumarin probe. The excited state dipole moment of the coumarin and the dynamic Stokes shift in solution depend significantly on the type of charge distributions used. Nevertheless, the overall characteristics of the solvation responses obtained from both sets of charges are very similar and show good agreement with time-dependent Stokes shift experiments. Microscopic details of the solvent reorganization around the probe are discussed in light of the charge transfer upon photoexcitation.  相似文献   

17.
A new method for performing molecular dynamics simulations with fluctuating charge polarizable potentials is introduced. In fluctuating charge models, polarizability is treated by allowing the partial charges to be variables, with values that are coupled to charges on the same molecule as well as those on other molecules. The charges can be efficiently propagated in a molecular dynamics simulation using extended Lagrangian dynamics. By making a coordinate change from the charge variables to a set of normal mode charge coordinates for each molecule, a new method is constructed in which the normal mode charge variables uncouple from those on the same molecule. The method is applied to the TIP4P-FQ model of water and compared to other methods for implementing the dynamics. The methods are compared using different molecular dynamics time steps.  相似文献   

18.
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3‐dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are ±0.5 e. While the three‐dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly—with the positive result that for ionic charges of ±0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial‐charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic‐liquid models in which the ionic charges are assumed to be ±1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled‐charge sets may be of benefit in the simulation of these systems—especially when looking at properties beyond liquid structure—thus providing an alternative to computationally expensive polarisable force fields.  相似文献   

19.
Molecular dynamics simulations of NaCl fluid are used to understand the behavior of ionic fluid to screen the field generated by charges on the ionic crystal surfaces in absence of any external electric field. The NaCl fluid in the strongly coupled regime (corresponding to the melt) in contact with the charged octopolar (111) NaCl surface shows that the spatial correlations decay in an oscillatory manner, with a screening length lambdaQ given by the envelope of the damped oscillations. By contrast to the Debye-Huckel theory, in the strongly coupled regime, lambdaQ increases with increasing coupling strength (also seen in bulk ionic simulations). The NaCl fluid confined between neutral (100) NaCl surfaces also shows weak oscillatory charge decay near the surface. Similar oscillatory exponential decay was seen when the NaCl fluid was confined between two analytically smooth neutral walls. The origin of these oscillations was due to the difference in ion sizes. NaCl fluid confined between neutral octopolar (110) and dipolar (110) surface show stronger density oscillations than (100) surface but comparatively very weak charge oscillations. This paper shows that the strength of the charges on the crystal surfaces is enough to induce a characteristic spatial distribution of charges in the contacting fluid and the extent of distribution depends on the type of surface.  相似文献   

20.
We present molecular dynamics simulation results for solvation dynamics in the water pool of anionic-surfactant reverse micelles (RMs) of varying water content, w(0). The model RMs are designed to represent water/aerosol-OT/oil systems, where aerosol-OT is the common name for sodium bis(2-ethylhexyl)sulfosuccinate. To determine the effects of chromophore-headgroup interactions on solvation dynamics, we compare the results for charge localization in model ionic diatomic chromophores that differ only in charge sign. Electronic excitation in both cases is modeled as charge localization on one of the solute sites. We find dramatic differences in the solvation responses for anionic and cationic chromophores. Solvation dynamics for the cationic chromophore are considerably slower and more strongly w(0)-dependent than those for the anionic chromophore. Further analysis indicates that the difference in the responses can be ascribed in part to the different initial locations of the two chromophores relative to the surfactant interface. In addition, slow motion of the cationic chromophore relative to the interface is the main contributor to the longer-time decay of the solvation response to charge localization in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号