首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A noncollinear configuration of magnetic anisotropy in spin valves with strong and weak interlayer couplings has been formed by annealing and cooling in a magnetic field. The dependence of the low-field magnetoresistance hysteresis loop width on the angle between the applied magnetic field and the principal axes of the magnetic anisotropy in a spin valve has been investigated. It has been found that, only in the case of a strong ferromagnetic interlayer coupling, the formation of a noncollinear configuration of the magnetic anisotropy provides a hysteresis-free character of the magnetization reversal of the free layer with retaining the maximum magnetoresistance and magnetoresistive sensitivity.  相似文献   

2.
The occurrence of a noncollinear magnetic structure at a Mn monolayer grown epitaxially on Fe(100) is predicted theoretically, using spinor density-functional theory, and observed experimentally, using x-ray magnetic circular dichroism (XMCD) and linear dichroism (XMLD) spectroscopies. The combined use of XMCD and XMLD at the Mn-absorption edge allows us to assess the existence of ferromagnetic and antiferromagnetic order at the interface, and also to determine the moment orientations with element specificity. The experimental results thus obtained are in excellent agreement with the magnetic structure determined theoretically.  相似文献   

3.
芦佳  甘渝林  颜雷  丁洪 《物理学报》2021,(4):327-332
在铁磁/超导异质结中,铁磁体的交换场通过近邻效应将导致超导体准粒子态密度的塞曼劈裂.基于该效应,在外磁场不强的情况下,通过外加磁场可以有效地调节铁磁/超导界面处的交换作用,从而实现超导体在正常态和超导态之间转换,产生极大磁电阻.本文利用脉冲激光沉积方法制备了EuS/Ta异质结并研究了其电磁特性.Ta在3.6 K以下为超...  相似文献   

4.
The influence of the Cu layer thickness on the magnetic and magnetotransport properties has been investigated in Ta/NiFe/Cu/NiFe/FeMn spin valves. The magnetization and magnetoresistance measurements were carried out for magnetic field applied along the easy-axis direction. A phenomenological model, which assumes formation of a planar domain wall at the anti-ferromagnetic side of the interfaces as well as bilinear coupling between the ferromagnetic layers, was used to derive the anisotropy characteristics and orientation of each NiFe layer magnetization. The anisotropy and spin valve magnetoresistance were simulated numerically and compared with the experiment. It was found that the anisotropy magnetoresistance is negligible and that there is a poor agreement for the spin-valve one, which was attributed to the model (valid for ferromagnetic layers in single-domain state only) used for its calculation. It was found that the increase of the Cu layer thickness provokes a decrease of the interdiffusion between the NiFe and FeMn layers, and, as consequence, changes of the uniaxial anisotropy of the pinned NiFe layer, of the exchange interaction between the pinned NiFe layer and the FeMn ones, as well as of the exchange-bias field of the pinned NiFe layer.  相似文献   

5.
The magnetic properties of as-grown Ga1-xMnxAs have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The intrinsic XMCD intensity at high temperatures obeys the Curie-Weiss law, but a residual spin magnetic moment appears already around 100 K, significantly above the Curie temperature (T_{C}), suggesting that short-range ferromagnetic correlations are developed above T_{C}. The present results also suggest that the antiferromagnetic interaction between the substitutional and interstitial Mn (Mn_{int}) ions exists and that the amount of the Mn_{int} affects T_{C}.  相似文献   

6.
The variations of electronic and magnetic properties of ultrathin Fe overlayers on a W(001) surface as a function of Fe film thickness (1.0–4.0 ML) has been investigated using X-ray magnetic circular dichroism (XMCD) in conjunction with ultraviolet photoelectron spectroscopy (UPS) and low energy electron diffraction (LEED). We found that the ferromagnetic property of Fe film started to build up over 2.0 ML, as we confirmed the spin and angular moment contribution to the magnetic moment using XMCD experiments. We also confirmed that a thermally stable layer is over 2.0 ML of Fe film as we change the annealing temperature taken after Fe deposition at 300 K and at 400 K using UPS. We will systematically demonstrate that the occurrence of ferromagnetic property of Fe film on a W(001) surface is closely correlated to a thermally stable layer of Fe film on a W(001) surface.  相似文献   

7.
We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using x-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms as estimated by XMCD shows a good agreement with results obtained by conventional magnetometry. This evidences intrinsic spin polarization in nanosized gold.  相似文献   

8.
Polarization dependent x-ray photoemission electron microscopy was used to investigate the spin structure near the surface of an antiferromagnetic NiO(001) single crystal in response to the deposition of a thin ferromagnetic Co film. For the cleaved NiO surface we observe only a subset of bulklike antiferromagnetic domains which is attributed to minimization of dipolar energies. Upon Co deposition a spin reorientation near the NiO interface occurs, with the antiferromagnetic spins rotating in plane, parallel to the spins of the Co layer. Our results demonstrate that the spin configuration in an antiferromagnet near its interface with a ferromagnet may significantly deviate from that in the bulk antiferromagnet.  相似文献   

9.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

10.
Magnetoresistance measurements have been exploited to gain information on the magnetic microstructure of two Ni/NiO nanogranular materials consisting of Ni nanocrystallites (mean size of the order of 10 nm) embedded in a NiO matrix and differing in the amount of metallic Ni, ~33 and ~61 vol%. The overall conductance of both samples is metallic in character, indicating that the Ni content is above the percolation threshold for electric conductivity; the electric resistivity is two orders of magnitude smaller in the sample with higher Ni fraction (10(-5) Ωm against 10(-3) Ωm). An isotropic, spin-dependent magnetoresistance has been measured in the sample with lower Ni content, whereas both isotropic and anisotropic magnetoresistance phenomena coexist in the other material. This study, associated with magnetization loop measurements and the comparison with the exchange bias effect, allows one to conclude that in the sample with lower Ni content neither the physical percolation of the Ni nanocrystallites nor the magnetic percolation (i.e., formation of a homogeneous ferromagnetic network) are achieved; in the other sample physical percolation is reached while magnetic percolation is still absent. In both behaviors, a key role is played by the NiO matrix, which brings about a magnetic nanocrystallite/matrix interface exchange energy term and rules both the direct exchange interaction among Ni nanocrystallites and the magnetotransport properties of these nanogranular materials.  相似文献   

11.
A spin valve with two pinned ferromagnetic layers sandwiching a free ferromagnetic layer with a thickness smaller than the spin diffusion length in the same layer and than the domain wall thickness is considered. The instability conditions are determined for various mutual orientations of the magnetization of the layers. The possibility of a considerable decrease in the instability threshold due to joint action of spin-polarized current and an external magnetic field is indicated. It is shown that in addition to collinear states, a nonequilibrium noncollinear state can exist, into which the system is switched after exceeding the instability threshold.  相似文献   

12.
We have fabricated ferromagnetic/nonmagnetic (FM/NM) metal heterojunctions for the detection of the spin accumulation effect in different nonmagnetic metals. To understand the effect of spin accumulation in more detail, the switching behavior of the ferromagnetic wires was studied by means of magnetoresistance (MR) measurements and Monte Carlo simulations (MC). The polycrystalline heterojunctions were prepared by high-resolution electron beam lithography (HR-EBL) and a special oblique evaporation technique. The ferromagnetic (FM) and the nonmagnetic (NM) metal were evaporated on top of each other in a single-evaporation step to achieve an interface between the two metals of high quality. To verify the quality of the interface, we measured the spin accumulation effect in nonmagnetic copper (Cu) and aluminum (Al) and determined the spin polarization of the current at the interface between the ferromagnetic and nonmagnetic metals.  相似文献   

13.
So far, attempts at realizing spin-polarized current injection into a semiconductor using metallic ferromagnetic contacts have yielded unsatisfying results. In this paper, we present a simple model of diffusive transport, which shows that the principle reason for these negative results is a conductivity mismatch between the ferromagnetic contacts and the semiconductor. Moreover, we demonstrate that this problem can be addressed by using dilute magnetic semiconductor (DMS) contacts instead of metallic contacts. We present experimental results of optical measurements on a GaAs/AlGaAs diode fitted with a DMS spin injector contact. These measurements show a spin polarization of around 90% in the semiconductor. Furthermore, we discuss a novel magnetoresistance effect based on the suppression of one of the spin channels in the semiconductor which should allow the detection of a spin-polarized current by magnetoresistance measurements.  相似文献   

14.
We present in this paper an analytic model to describe the effect of spin diffusion in CPP (current perpendicular to the plan) spin valves. Two ferromagnetic electrodes are separated by a nonmagnetic metal, organic or inorganic semiconducting spacer. We base our calculations on the evolution of the spin polarized density of states of the saturated ferromagnetic electrodes under an applied rotating magnetic field and the spin diffusion in the spacer. Without treating the mechanism of spin relaxation and dephasing in the spacer, we establish a general model with the cosine evolution of the magnetoresistance modulated by the effect of spin diffusion. Throughout our treatment we consider a tunnel junction at the interface between each ferromagnetic electrode and the spacer.  相似文献   

15.
Negative magnetoresistance modifying the quality factor of a microwave cavity under the magnetization switching of ferromagnetic layers has been discovered in a MgO/CoFeB/MgO/Ta film with a single ferromagnetic layer and a MgO/CoFeB/Ta/CoFeB/MgO/Ta spin valve consisting of two ferromagnetic CoFeB layers. The dependence of the first derivative dP/dH of the microwave absorption signal on the dc magnetic field of the spectrometer exactly reproduce the magnetic hysteresis loops of the sample. The slope of these dependences and the amplitude of dP/dH jumps under remagnetization of the layers are determined by the interplay of a negative magnetoresistance of individual layers and a positive giant magnetoresistance of the entire multilayer structure. The discovered phenomenon allows using microwave absorption for making a high-sensitivity contact-free indicator of the basic magnetization states of a spin valve.  相似文献   

16.
We present an x-ray magnetic circular dichroism (XMCD) study of Co/Cu and Fe/Cu multilayers, finding that the Cu atoms in these structures exhibit an induced magnetic moment in the d shell. The average Cu spin moment is shown to fall-off inversely with the thickness of the Cu layer. Further, for comparable Cu layer thicknesses, the Cu moments in Fe/Cu and Co/Cu multilayers are found to be nearly equal, despite the fact that the Cu layers in the Co/Cu multilayers are shown to be fee while those in the Fe/Cu structures are bcc. These observations suggest that the induced moment is primarily situated at the Co/Cu and Fe/Cu interfaces and is resultant from short range chemical hybridization between the ferromagnetic and Cu atoms. Results from a local spin density functional theory are presented and found to be in excellent agreement with experimental observations. These results indicate that the Cu d electrons play a central role in mediating the exchange coupling between successive ferromagnetic layers.  相似文献   

17.
X‐ray magnetic circular dichroism (XMCD) is one of the most powerful tools for investigating the magnetic properties of different types of materials that display ferromagnetic behavior. Compared with other magnetic‐sensitive techniques, XMCD has the advantage of being element specific and is capable of separating the spin and magnetic moment contributions associated with each element in the sample. In samples involving, for example, buried atoms, clusters on surfaces or at interfaces, ultrathin films, nanoparticles and nanostructures, three experimental conditions must be present to perform state‐of‐the‐art XMCD measurements: high magnetic fields, low temperatures and an ultra‐high‐vacuum environment. This paper describes a new apparatus that can be easily installed at different X‐ray and UV beamlines at the Brazilian Synchrotron Light Laboratory (LNLS). The apparatus combines the three characteristics described above and different methods to measure the absorption signal. It also permits in situ sample preparation and transfer to another chamber for measurement by conventional surface science techniques such as low‐energy electron diffraction (LEED), reflection high‐energy electron diffraction (RHEED), X‐ray photoelectron spectroscopy (XPS) and X‐ray photoelectron diffraction (XPD). Examples are given of XMCD measurements performed with this set‐up on different materials.  相似文献   

18.
Epitaxial Fe3O4/NiO bilayers were epitaxially grown on MgO(001) and Al2O3(0001) substrates to investigate the influence of the fully spin compensated (001) and the non-compensated (111) NiO interface planes between the ferromagnetic (F) and antiferromagnetic (AF) layers on the AF/F exchange coupling. Bilayers of different magnetite thicknesses and constant NiO thickness were investigated. The structural characterizations indicate a perfect epitaxy of the two layers for the both growth directions in the two Fe3O4/NiO/MgO(001) and NiO/Fe3O4/Al2O3(0001) systems. An epitaxial ferrimagnetic (Ni,Fe)Fe2O4 phase is observed at the AF/F interface when the NiO oxide is grown on the top of the Fe3O4 layer while a perfectly flat AF/F interface is observed in the Fe3O4/NiO/MgO(001) system exhibiting only a very slight interdiffusion. Magnetic measurements indicate a relative strong bias at 300 K for the bilayers grown on Al2O3(0001), which decreases with the inverse of the ferrimagnetic layer thickness as theoretically expected. On the contrary, a zero exchange biasing is observed at 300 K for the bilayers grown on MgO(001).  相似文献   

19.
Cobalt nanoparticles have been embedded either within magnetic thin films of CuNi or Ni, or at their interface with an Al capping layer. Soft X-ray magnetic circular dichroism (XMCD) was used to measure element-specific hysteresis loops, allowing discrimination between the nanoparticles and the host film. The hysteresis shows coupling between the nanoparticles and the films and a reduction in coercivity is observed when positioning the nanoparticles within the film, as opposed to at its interface with the cap. Sum rule analysis of the XMCD spectra makes it possible to determine the orbital to spin moment ratios for Co and Ni in the samples. The difference in the calculated ratios is consistent with the differences in the coercivities, the films appearing more homogenous due to hybridization of the 3d bands of Co and Ni when the nanoparticles are embedded deeper within the films, creating less pinning sites and hence a lower coercivity.  相似文献   

20.
贾兴涛  夏钶 《物理学报》2011,60(12):127202-127202
用第一性原理方法研究了在微观尺度具有三重对称磁结构的IrMn合金的反铁磁自旋阀(AFSV)的电子输运.研究表明:基于有序L12相IrMn合金的Co/Cu/IrMn自旋阀的巨磁电阻(GMR)效应具有三重对称性,可以利用这一特性区分反铁磁材料的GMR与传统铁磁材料的GMR.基于无序γ相IrMn合金的IrMn(0.84 nm)/Cu(0.42 nm)/IrMn(0.42 nm)/Cu(0.42 nm)(111) AFSV的电流平行平面构型的GMR约为7.7%,大约是电流垂直平面构型的GMR(3.4%)的两倍,明显大于实验中观测到的基于共线磁结构的FeMn基AFSV的GMR. 关键词: 反铁磁自旋阀 巨磁电阻效应 非共线磁结构 电流平行平面结构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号