首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geng L  Cheng WD  Zhang H  Lin CS  Zhang WL  Li YY  He ZZ 《Inorganic chemistry》2011,50(6):2378-2384
Two new quaternary sulfides, Ba(2)SbFeS(5) and Ba(2)BiFeS(5), were synthesized by using a conventional high-temperature solid-state reaction method in closed silica tubes at 1123 K. The two compounds both crystallize in the orthorhombic space group Pnma with a = 12.128(6) ?, b = 8.852(4) ?, c = 8.917(4) ?, and Z = 4 for Ba(2)SbFeS(5) and a = 12.121(5) ?, b = 8.913(4) ?, c = 8.837(4) ?, and Z = 4 for Ba(2)BiFeS(5). The crystal structure unit can be viewed as an infinite one-dimensional edge-shared MS(5) (M = Sb, Bi) tetragonal-pyramid chain with FeS(4) tetrahedra alternately arranged on two sides of the MS(5) polyhedral chain via edge-sharing (so the chain can also be written as (1)(∞)[MFeS(5)](4-)). Interestingly, the compounds have the structural type of a Ba(3)FeS(5) high-pressure phase considering one Ba(2+) is replaced by one Sb(3+)/Bi(3+), with Fe(4+) reduced to Fe(3+) for in order to maintain the electroneutrality of the system. As a result, the isolated iron ions in Ba(3)FeS(5) are bridged by intermediate MS polyhedra in Ba(2)MFeS(5) (M = Sb, Bi) compounds and form the (1)(∞)[MFeS(5)](4-) chain structure. This atom substitution of Ba(2+) by one Sb(3+)/Bi(3+) leads to a magnetic transition from paramagnetic Ba(3)FeS(5) to antiferromagnetic Ba(2)MFeS(5), resulting from an electron-exchange interaction of the iron ions between inter- or intrachains. Magnetic property measurements indicate that the two compounds are both antiferromagnetic materials with Ne?el temperatures of 13 and 35 K for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively. First-principles electronic structure calculations based on density functional theory show that the two compounds are both indirect-band semiconductors with band gaps of 0.93 and 1.22 eV for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively.  相似文献   

2.
A recently discovered series of quaternary compounds of the general type [K(m)(ROH)(n)()][M(x)Sn(y)()Se(z)] (R = H, Me), containing ternary anions with [SnSe(4)](4-)-coordinated transition metal centers (M = Co, Mn, Zn, Cd, Hg) has now been extended by the synthesis and characterization of the two ortho-thiostannate-coordinated species, [Na(10)(H(2)O)(32)][M(5)Sn(mu(3)-S)(4)(SnS(4))(4)].2H(2)O (M = Zn (1), Co (2)). The central structural motifs of compounds 1 and 2 are highly charged [M(5)Sn(mu(3)-S)(4)(SnS(4))(4)](10-) anions, being the first T3-type supertetrahedral ternary anions reported to date. The exposure of single crystals of 2 to a dynamic vacuum for several hours resulted in the reversible formation of a partially dehydrated, but still monocrystalline material of the composition [Na(10)(H(2)O)(6)][Co(5)Sn(mu(3)-S)(4)(SnS(4))(4)] (3). The loss of 28 of the 34 water molecules only slightly affects the internal structure of the ternary anion in 3 and leads to a significant compacting of the crystal structure with closer linkage of the [Co(5)Sn(5)S(20)](10-) cluster units via the Na(+) cations. Magnetic measurements on 3 show that the ground state of the Co/Sn/S cluster is S = 1/2, indicating a significant antiferromagnetic coupling between the Co centers, which has also been rationalized by DFT investigations of the electronic situation in the ternary subunits of 1-3.  相似文献   

3.
The first two members in alkaline-earth/group XI/group XIII/chalcogen system, namely Ba(2)AgInS(4) and Ba(4)AgGa(5)Se(12), were synthesized along with a Li analogue Ba(4)LiGa(5)Se(12). Ba(2)AgInS(4) crystallizes in space group P2(1)/c. It contains [AgInS(4)](4-) layers built from AgS(3) triangles and InS(4) tetrahedra with Ba(2+) cations inserted between the layers. Ba(4)AgGa(5)Se(12) and Ba(4)LiGa(5)Se(12) adopt two closely-related structure types in space group P4[combining macron]2(1)c with structural difference originating from the different positions of Ag and Li in them. The three-dimensional framework in Ba(4)AgGa(5)Se(12) is composed of GaSe(4) tetrahedra with the Ba and Ag atoms occupying the large and small channels respectively, whereas that in Ba(4)LiGa(5)Se(12) is built from LiSe(4) and GaSe(4) tetrahedra with channels to accommodate the Ba atoms. As deduced from the diffuse reflectance spectra measurement, the optical band gaps were 2.32 (2) eV, 2.52 (2) eV, and 2.65 (2) eV for Ba(2)AgInS(4), Ba(4)AgGa(5)Se(12), and Ba(4)LiGa(5)Se(12), respectively.  相似文献   

4.
In the systems Ca3(PO4)2-MSO4 (M = Sr, Ba), the series of single phase Ca21?3xM2xI(PO4)14?2x(SO4)2x with 0<x<0.15 forM=Sr and 0<x<0.1 forM = Ba have been prepared. These solid solutions, respectively strontium phosphosulfate and barium phosphosulfate, are isostructural with anhydrous tricalcium orthophosphate. They have been characterized by their infrared spectra and their crystallographic unit cell parameters.  相似文献   

5.
采用密度泛函理论(DFT)的B3LYP方法, 在6-31G**和Lanl2dz水平上分别对(MN)nHm(M=Ga, In; n=1-4; m=1, 2)进行了优化和振动频率计算. 得到了上述团簇的最稳定构型、H原子的结合能以及它们的能隙. 结果表明, (MN)nH(M=Ga, In; n=1-4)的基态构型均为双重态, (MN)nH2(M=Ga, In; n=1-4)的基态构型均为单重态; 当氢的个数为1时, 加在N原子上比加在M(M=Ga, In)原子上稳定, 如有N3单元, 那么加在N3单元两侧的构型是相同的, 且它是最稳定的; 当氢的个数为2时, 除n=1外, 分别加在两个N原子上的构型是最稳定的, 如有N3单元, 那么分别加在N3单元分离最远的两个N原子的构型是最稳定的. GaNH、(GaN)3H 和InNH的结合能和能隙都很大, 说明这些团簇都有很高的稳定性.  相似文献   

6.
Four new quaternary chalcogenides, Ba4AgGaS6 ( 1 ), Ba4AgGaSe6 ( 2 ), Ba4CuInS6 ( 3 ), and Ba4AgInS6 ( 4 ), were synthesized by solid‐state reactions and their structures were characterized through single‐crystal X‐ray diffraction. In spite of their similar chemical compositions, the flexible arrangement between the transition metals and the triel atoms leads to subtle differences in their polyanion structures. All structures feature similar [MTrQ6]8? 1D polyanionic chains (M=Cu, Ag; Tr=Ga, In; Q=S, Se), which are constructed from corner‐sharing MQ4 or TrQ4 tetrahedra. However, the transition metals and triels are mixed in 1 , 2 , and 3 , but they occupy independent crystallographic sites in 4 . As a result, compounds 1 – 3 belong to the known Ba2CoS3 (Pnma No. 62) or Ba2MnS3 (Pnma No. 62) class, whereas 4 crystallizes in its own structural type within the monoclinic P21/c (No. 14) space group. The structural relationship among these new phases was also studied with the aid of DFT calculations and related optical properties are presented as well.  相似文献   

7.
Reactions of K4[SnSe4].1.5MeOH with ZnCl2 or MnCl2.4H2O in water/methanol mixtures yield novel compounds [K10(H2O)16(MeOH)0.5][M4(mu4-Se)(SnSe4)4] (M = Zn, 2; Mn, 3) in high yields; 2 and 3 contain the first discrete ternary Zn/Sn/Se or Mn/Sn/Se cluster anions. Both compounds were unambiguously characterized by X-ray diffraction (tetragonal, space groups P43212 and P41212, respectively) revealing chiral anionic structures within chiral crystals. Optical spectra of 2 and 3 indicate energy differences for the lowest electronic excitations (Eg = 2.57 eV, 2; 2.27 eV, 3) that are very close to the band gap values observed for mesoporous solids with polymeric M/Sn/E networks. DFT investigations on the electronic situation and first ESR studies agree in that they demonstrate a high-spin ground state in the case of 3 with 20 unpaired electrons at four uncoupled MnII centers.  相似文献   

8.
Oxidation of [N(n-Bu(4))](2)[B(9)H(9)] with oxygen in a mixture of dimethoxyethane and CH(2)Cl(2) leads to salts of the [B(7)H(7)](2-) dianion. This is the first convenient synthesis for a seven-vertex hydro-closo-borate anion. Protonation with NEt(3)·HCl resulted in salts of the [B(7)H(8)](-) monoanion. Both closo-borate anions were isolated and characterized by (1)H, (1)H{(11)B}, (11)B, and (11)B{(1)H} NMR spectroscopy. The temperature-dependent (1)H{(11)B}, (11)B, and (11)B{(1)H} NMR spectra of [B(7)H(8)](-) were also measured. The structure of [B(7)H(7)](2-) as well as of [B(7)H(8)](-) were determined by single-crystal X-ray diffraction.  相似文献   

9.
The ternary thallium chalcogenides of the general formula Tl(4)MQ(4) (M = Zr or Hf; Q = S or Se) were obtained from high-temperature reactions without air. These sulfides and selenides are isostructural, crystallizing in the triclinic system with space group P1 and Z = 5, in contrast to Tl(4)MTe(4) compounds that adopt space group R3. The unit cell parameters for Tl(4)ZrS(4) are as follows: a = 9.0370(5) ?, b = 9.0375(5) ?, c = 15.4946(9) ?, α = 103.871(1)°, β = 105.028(1)°, γ = 90.138(1)°, and V = 1183.7(1) ?(3). In contrast to the corresponding tellurides, the sulfides and selenides exhibit edge-shared MQ(6) octahedra, propagating along the c axis in a zigzag manner. All elements occur in the most common oxidation states, according to the formulation (Tl(+))(4)M(4+)(Q(2-))(4). Electronic structure calculations predict energy band gaps of 1.7 eV for Tl(4)ZrS(4) and 1.3 eV for Tl(4)ZrSe(4), which are in accordance with the large resistivity values observed experimentally.  相似文献   

10.
The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. [X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.  相似文献   

11.
Yin W  Feng K  Wang W  Shi Y  Hao W  Yao J  Wu Y 《Inorganic chemistry》2012,51(12):6860-6867
The twelve quaternary rare-earth selenides Ba(2)MLnSe5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) have been synthesized for the first time. The compounds Ba(2)GaLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) are isostructural and crystallize in a new structure type in the centrosymmetric space group P ?1 of the triclinic system while the isostructural compounds Ba(2)InLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) belong to the Ba(2)BiInS(5) structure type and crystallize in the noncentrosymmetric space group Cmc2(1) of the orthorhombic system. The structures contain infinite one-dimensional anionic chains (1)(∞)[GaLnSe(5)](4-) and (1)(∞)[InLnSe(5)](4-), and both chains are built from LnSe(6) octahedra and MSe(4) (M = Ga, In) tetrahedra in the corresponding selenides. As deduced from the diffuse reflectance spectra, the band gaps of most Ba(2)MLnSe(5) (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) compounds are around 2.2 eV. The magnetic susceptibility measurements on Ba(2)GaGdSe(5) and Ba(2)InLnSe(5) (Ln = Nd, Gd, Dy, Er) indicate that they are paramagnetic and obey the Curie-Weiss law, while the magnetic susceptibility of Ba(2)InSmSe(5) deviates from the Curie-Weiss law as a result of the crystal field splitting. Furthermore, Ba(2)InYSe(5) exhibits a strong second harmonic generation response close to that of AgGaSe(2), when probed with the 2090 nm laser as fundamental wavelength.  相似文献   

12.
We report the results of density functional theory calculations on cluster-assembled materials based on M(12)N(12) (M = Al, Ga) fullerene-like clusters. Our results show that the M(12)N(12) fullerene-like structure with six isolated four-membered rings (4NRs) and eight six-membered rings (6NRs) has a T(h) symmetry and a large HOMO-LUMO gap, indicating that the M(12)N(12) cluster would be ideal building blocks for the synthesis of cluster-assembled materials. Via the coalescence of M(12)N(12) building blocks, we find that the M(12)N(12) clusters can bind into stable assemblies by either 6NR or 4NR face coalescence, which enables the construction of rhombohedral or cubic nanoporous framework of varying porosity. The rhombohedral-MN phase is energetically more favorable than the cubic-MN phase. The M(12)N(12) fullerene-like structures in both phases are maintained and the M-N bond lengths between M(12)N(12) monomers are slightly larger than that in isolated M(12)N(12) clusters and the bulk wurtzite phases. The band analysis of both phases reveals that they are all wide-gap semiconductors. Because of the nanoporous character of these phases, they could be used for gas storage, heterogeneous catalysis, filtration and so on.  相似文献   

13.
14.
Wang KC  Lee CS 《Inorganic chemistry》2006,45(4):1415-1417
Quaternary sulfides MPb8In17S34 (M = Cu, Ag, Au) were synthesized at 1123 K from their elements in stoichiometric ratios. These compounds crystallize in monoclinic space group P2(1)/m. The crystal structures feature combinations of 2[InS2] (NaCl111-type) and [MPb2In3S6] (NaCl100-type) slabs. These compounds are semiconductors with band gaps near 1.3 eV.  相似文献   

15.
Four cubic compounds are reported that contain the supertetrahedral cluster [M(4)Sn(4)S(17)](10)(-) where M = Mn, Fe, Co, Zn. The cluster features a central quadruply bridging sulfide ion (mu(4)-S) that holds together four divalent M atoms in a tetrahedral arrangement. This core is capped with four tridentate [SnS(4)](4)(-) fragments to complete the structure.  相似文献   

16.
The Pentatellurides M2Te5 (M = Al, Ga, In): Polymorphism, Structural Relations, and Homogeneity Ranges The hitherto unknown crystal structure of the black solid Al2Te5 is solved by Rietveld refinement of X-Ray powder data: a = 1359.29(3) pm, b = 415.27(1) pm, c = 983.92(2) pm, β = 126.97(1)°, space group: C2/m (no. 12), Z = 2. In contrast to Ga2Te5 and In2Te5Al2Te5 is very sensitive to hydrolysis. It can formally be described as Te[AlTe3/3Te1/1]2, containing layers made up of chains of cis-edge-sharing AlTe4 tetrahedra [AlTe3/3Te1/1] and additional Te atoms. In2Te5-I and In2Te5-II are characterized by layers with a similar topology, Ga2Te5 however is different. It has no layer structure, but contains chains of trans-edge-sharing GaTe4-tetrahedra and additional Te-atoms according to the formulation Te[GaTe4/2]2. It can be regarded as a variant of the TlSe type structure. From heterogeneous samples with the nominal composition In0.5Ga1.5Te5 single crystals of a new stacking variant (In2Te5-III) of the In2Te5 structure type can be isolated. The composition of the crystals, determined by single crystal structure analysis, is In0.77Ga1.23Te5, with a = 1613.2(3) pm, b = 424.6(1) pm, c = 1330.5(2) pm, β = 97.39(1)°, space group C2/c (Nr. 15), Z = 4. This structure type is not yet known for unsubstituted In2Te5. The range of homogeneity for Ga2Te5 with respect to the substitution of Gallium by Indium is given by Ga2-xInxTe5 (x < 0.4). Within the limits of experimental error however a substitution of Te in Ga2Te5 by Se cannot be detected.  相似文献   

17.
Koo HJ  Lee KS  Whangbo MH 《Inorganic chemistry》2006,45(26):10743-10749
The spin exchange interactions of the magnetic oxides Ba3Cr2O8, Ba3Mn2O8, Na4FeO4, and Ba2CoO4 with a three-dimensional network of isolated MO4 (M = Cr, Mn, Fe, Co) tetrahedra were examined by performing spin dimer analysis on the basis of tight-binding electronic structure calculations. Although the shortest O...O distances between adjacent MO4 tetrahedra are longer than the van der Waals distance, our analysis shows that the super-superexchange interactions between adjacent MO4 tetrahedra are substantial and determine the magnetic structures of these oxides. In agreement with experiment, our analysis predicts a weakly interacting isolated AFM dimer model for both Ba3Cr2O8 and Ba3Mn2O8, the (0.0, 0.5, 0.0) magnetic superstructure for Na4FeO4, the (0.5, 0.0, 0.5) magnetic superstructure for Ba2CoO4, and the presence of magnetic frustration in Ba2CoO4. The comparison of the intra- and interdimer spin exchange interactions of Ba3Cr2O8 and Ba3Mn2O8 indicates that orbital ordering should be present in Ba3Cr2O8.  相似文献   

18.
Ng MT  Vittal JJ 《Inorganic chemistry》2006,45(25):10147-10154
(Et3NH)[In(SeC{O}Ph)4].H2O (1) along with heterobimetallic and polymeric metal selenocarboxylates, namely [NaGa(SeC{O}Ph)4] (2), [K(MeCN)2Ga(SeC{O}Ph)4] (3), [NaIn(SeC{O}Ph)4] (4), [K(MeCN)2In(SeC{O}Ph)4] (5), [(Ph3P)2CuIn(SeC{O}Ph)4].CH2Cl2 (6), and [(Ph3P)2AgIn(SeC{O}Ph)4].CH2Cl2 (7), have been synthesized by incorporating either alkali metal ions (Na+ and K+) or group 11 metal ions (Cu(I) and Ag(I)) into the [M(SeC{O}Ph)4]- anion. Crystal structures determined by X-ray crystallography indicate that 3 and 5 have one-dimensional coordination polymeric structures while 6 and 7 have an M(mu-Se)2In (M = Cu, Ag) core. The thermal decomposition of these compounds except 4 lead to the formation of the corresponding metal selenides as confirmed by thermogravimetric analysis and in some cases by powder X-ray diffraction studies.  相似文献   

19.
20.
X-ray diffraction and differential-thermal analyses were used to study the phase relations in the subsolidus region of the system Li2MoO4-BaMoO4-R2(MoO4)3. The temperature dependence of the conductivity of Li3Ba2R3(MoO4)8 phases (R = Y, Eu, Sm, La) was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号