首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The local-density approximation of density functional theory (DFT) is remarkably accurate, for instance, for geometries and frequencies, and the generalized gradient approximations have also made bond energies quite reliable. Sometimes, however, one meets with failure in individual cases. One of the possible routes towards better functionals would be the incorporation of orbital dependence (which is an implicit density dependency) in the functionals. We discuss this approach both for energies and for response properties. One possibility is the use of the Hartree-Fock-type exchange energy expression as orbital-dependent functional. We will argue that in spite of the increasing popularity of this approach, it does not offer any advantage over Hartree-Fock for energies. We will advocate not to apply the separation of exchange and correlation, which is so ingrained in quantum chemistry, but to model both simultaneously. For response properties the energies and shapes of the virtual orbitals are crucial. We will discuss the benefits that Kohn-Sham potentials can offer which are derived from either an orbital-dependent energy functional, including the exact-exchange functional, or which can be obtained directly as orbital-dependent functional. We highlight the similarity of the Hartree-Fock and Kohn-Sham occupied orbitals and orbital energies, and the essentially different meanings the virtual orbitals and orbital energies have in these two models. We will show that these differences are beneficial for DFT in the case of localized excitations (in a small molecule or in a fragment), but are detrimental for charge-transfer excitations. Again, orbital dependency, in this case in the exchange-correlation kernel, offers a solution.  相似文献   

3.
Though there is fevered effort on orbital-dependent approximate exchange-correlation functionals, generalized gradient approximations, especially the Perdew-Burke-Ernzerhof (PBE) form, remain the overwhelming choice in calculations. A simple generalized gradient approximation (GGA) exchange functional [A. Vela, V. Medel, and S. B. Trickey, J. Chem. Phys. 130, 244103 (2009)] was developed that improves substantially over PBE in energetics (on a typical test set) while being almost as simple in form. The improvement came from constraining the exchange enhancement factor to be below the Lieb-Oxford bound for all but one value of the exchange dimensionless gradient, s, and to go to the uniform electron gas limit at both s = 0 and s → ∞. Here we discuss the issue of asymptotic constraints for GGAs and show that imposition of the large s constraint, lim(s→∞)s(1/2)F(xc)(n,s)<∞, where F(xc)(n, s) is the enhancement factor and n is the electron density, upon the Vela-Medel-Trickey (VMT) exchange functional yields modest further improvement. The resulting exchange functional, denoted VT{8,4}, is only slightly more complicated than VMT and easy to program. Additional improvement is obtained by combining VT{8,4} or VMT exchange with the Lee-Yang-Parr correlation functional. Extensive computational results on several datasets are provided as verification of the overall performance gains of both versions.  相似文献   

4.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

5.
The electronic structure and properties of PuO2 and Pu2O3 have been studied from first principles by the all-electron projector-augmented-wave method. The local density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by the choice of U as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu2O3, leading to formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U, it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modeling of redox process involving Pu-based materials possible.  相似文献   

6.
The local spin density (LSD) approximation, while of only moderate accuracy, has proven extremely reliable over three decades of use. We argue that any gradient-corrected functional should preserve the correct features of LSD even if the system under study contains no regions of small density gradient. The Perdew-Wang 1991 (PW91) functional respects this condition, while, e.g., the Lee-Yang-Parr (LYP) correlation functional violates it. We extend this idea to the next generation of density functionals, those which incorporate exact exchange via the optimized effective potential (OEP), with a model in which the correlation hole is constructed from the exact exchange hole. The resulting exchange-correlation hole is deeper and less diffuse than the exact exchange hole. We denote such a functional as “locally correlated Hartree-Fock” and list a variety of conditions such a functional should satisfy. We demonstrate the promise of this approach with a crude simple model. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
We study for the first time the effect of the dependence of meta generalized gradient approximation (MGGA) for the exchange-correlation energy on its input, the kinetic energy density, through the dimensionless inhomogeneity parameter, α, that characterizes the extent of orbital overlap. This leads to a simple MGGA exchange functional, which interpolates between the single-orbital regime, where α = 0, and the slowly varying density regime, where α ≈ 1, and then extrapolates to α → ∞. When combined with a variant of the Perdew-Burke-Ernzerhof GGA correlation, the resulting MGGA performs equally well for atoms, molecules, surfaces, and solids.  相似文献   

8.
The common way to obtain energies from Kohn-Sham exchange potentials is by using the Levy-Perdew virial relation. For potentials that are not functional derivatives (i.e., nearly all model exchange potentials in existence), this approach leads to energy expressions that lack translational and rotational invariance. We propose a method for constructing potential-based energy functionals that are free from these artifacts. It relies on the same line-integration technique that gives rise to the Levy-Perdew relation, but uses density scaling instead of coordinate scaling. The method is applicable to any exchange or correlation potential that depends on the density explicitly, and correctly recovers the parent energy functional from a functional derivative. To illustrate our approach we develop a properly invariant generalized gradient approximation for exchange starting from the model potential of van Leeuwen and Baerends.  相似文献   

9.
A one-step, nontemplated, low-cost electrochemical method for the growth of gold nanostructures with different shapes is reported here. It is the first time that nanopyramidal, nanorod-like, and spherical gold nanostructures were fabricated on polycrystalline gold substrates through electrochemical overpotential deposition (OPD) by easily manipulating the deposited potentials and concentrations of HAuCl4. X-ray diffraction and electrochemical analyses revealed that the pyramidal structures are more extensively dominated by (111) facets in comparison with the other nanostructures. The nanopyramids, which have anisotropic structures, exhibited broad extinction over the visible region, most likely due to plasmon resonance. Oxygen reduction activity of a gold electrode with the pyramidal structures was lower than those of the electrodes with the other nanostructures since the activity at the gold (111) surface is lower than that at the (100) and (110) surfaces.  相似文献   

10.
Self-assembled monolayers of thiolated β-cyclodextrins on a gold electrode have been developed for the determination of thiodianiline. Pentanethiol was employed to fill the empty space between the β-cyclodextrins on the surface. The formation of a 1:2 inclusion complex between thiodianiline and β-cyclodextrin was studied by electrochemistry. The parameters affecting the modification of the electrode and the determination of thiodianiline by square wave voltammetry were optimized. The limits of detection and determination are 190 and 205 μg?L?1, respectively. The accuracy, in terms of relative error values, is <7%. The precision, in terms of RSD (for n?=?5), is <5%. The method was applied to the determination of thiodianiline in real wastewater samples with RSD values of <11% and an average recovery of 98% for all the spiking levels assayed.  相似文献   

11.
One-dimensional (1-D) metallic nanoscale materials have long been of interest to many groups of scientists. Within the last 2 decades, great advances in the synthesis of metallic nanorods and nanowires have been made, with a variety of templating methods. More recently, bottom-up chemical syntheses of these materials have become increasingly reported in the literature. This Forum Article describes the synthesis, physical properties, and potential applications of 1-D metals, with an emphasis on silver and gold derived from studies in the authors' laboratories.  相似文献   

12.
Ceria possesses strong catalytic properties for CONO(x) removal and H(2) production. Clusters often show more intriguing functionalities than their bulk counterparts. Here, the geometric and electronic structures of Ce(n)O(m) (n=1-4,m=2n-1,2n) clusters are studied for the first time using the projected augmented wave method in density functional theory with detailed assessment of the exchange-correlation functional and the Hubbard parameter U. We note that the U value strongly affects the electronic structures of the oxygen-deficient Ce(n)O(2n-1) clusters, though less so on the stoichiometric Ce(n)O(2n). Furthermore, the local density approximation (LDA)+U method is more accurate than the generalized gradient approximation+U in describing the localization of the 4f electrons of the Ce(n)O(m) clusters. The calculated vibration frequency of the CeO molecule with the LDA+U (U=4 eV) is 818.4 cm(-1), in close agreement with experimental values of 820-825 cm(-1) for the low lying states. Different optimal U values were noted for the ceria cluster (4 eV) and its bulk (6 eV), due to quantum-size and geometric effects. The largely reduced formation energy of an oxygen vacancy indicates that the catalytic effect of the Ce(n)O(m) clusters are far greater than bulk CeO(2).  相似文献   

13.
In this article, the results of a recently implemented DFT a posteriori and Kohn-Sham (KS ) linear combination of atomic orbital computational scheme for solids are presented. The equilibrium lattice parameters, bulk moduli, and lattice energies are calculated for eight crystallized systems. Local density approximation (LDA ) and generalized gradient approximation (GCA ) functionals and potentials are used. The maps of the Hartree-Fock (HF ) and Ks electronic densities and band structures are depicted. The KS results confirm the trend of the a posteriori scheme. Very good agreement between calculated and experimental lattice energies has been found for GGA potentials. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
An approximate kinetic‐energy functional of the generalized gradient approximation form was derived following the “conjointness conjecture” of Lee, Lee, and Parr. The functional shares the analytical form of its gradient dependency with the exchange‐energy functionals of Becke and Perdew, Burke, and Ernzerhof. The two free parameters of this functional were determined using the exact values of the kinetic energy of He and Xe atoms. A set of 12 closed‐shell atoms was used to test the accuracy of the proposed functional and more than 30 others taken from the literature. It is shown that the conjointness conjecture leads to a very good class of kinetic‐energy functionals. Moreover, the functional developed in this work is shown to be one of the most accurate despite its simple analytical form. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

15.
The electrodeposition of gold nanostructures increases the surface area of a biosensor, which brings an enhancement of the sensitivity by increasing the amount of analyte binding to the surface. To evaluate the relationship among the surface structure, the area and the analyte binding, we quantitatively analyzed them for quartz crystal microbalance (QCM) sensing by scanning electron microscopy and cyclic voltammetry measurements. The results indicate a several-times increase of analyte bindings, and also the limitation of the sensing performance.  相似文献   

16.
Recently, a generalized gradient approximation (GGA) to the density functional, called PBEsol, was optimized (one parameter) against the jellium-surface exchange-correlation energies, and this, in conjunction with changing another parameter to restore the first-principles gradient expansion for exchange, was sufficient to yield accurate lattice constants of solids. Here, we construct a new GGA that has no empirical parameters, that satisfies one more exact constraint than PBEsol, and that performs 20% better for the lattice constants of 18 previously studied solids, although it does not improve on PBEsol for molecular atomization energies (a property that neither functional was designed for). The new GGA is exact through second order, and it is called the second-order generalized gradient approximation (SOGGA). The SOGGA functional also differs from other GGAs in that it enforces a tighter Lieb-Oxford bound. SOGGA and other functionals are compared to a diverse set of lattice constants, bond distances, and energetic quantities for solids and molecules (this includes the first test of the M06-L meta-GGA for solid-state properties). We find that classifying density functionals in terms of the magnitude mu of the second-order coefficient of the density gradient expansion of the exchange functional not only correlates their behavior for predicting lattice constants of solids versus their behavior for predicting small-molecule atomization energies, as pointed out by Perdew and co-workers [Phys. Rev. Lett. 100, 134606 (2008); Perdew ibid. 80, 891 (1998)], but also correlates their behavior for cohesive energies of solids, reaction barriers heights, and nonhydrogenic bond distances in small molecules.  相似文献   

17.
 Exchange functionals used in density functional theory (DFT) are generally considered to simulate long-range electron correlation effects. It is shown that these effects can be traced back to the self-interaction error (SIE) of approximate exchange functionals. An analysis of the SIE with the help of the exchange hole reveals that both short-range (dynamic) and long-range (nondynamic) electron correlation effects are simulated by DFT exchange where the local density approximation (LDA) accounts for stronger effects than the generalized gradient expansion (GGA). This is a result of the fact that the GGA exchange hole describes the exact exchange hole close to the reference electron more accurately than the LDA hole does. The LDA hole is more diffuse, thus leading to an underestimation of exchange and stronger SIE effects, where the magnitude of the SIE energy is primarily due to the contribution of the core orbitals. The GGA exchange hole is more compact, which leads to an exaggeration of exchange in the bond and the nonbonding region and negative SIE contributions. Partitioning of the SIE into intra-/interelectronic and individual orbital contributions makes it possible to test the performance of a given exchange functional in different regions of the molecule. It is shown that Hartree–Fock exchange always covers some long-range effects via interelectronic exchange while self-interaction-corrected DFT is lacking these effects. Received: 25 May 2002 / Accepted: 7 October 2002 / Published online: 21 January 2003 Correspondence to: E. Kraka e-mail: kraka@theoc.gn.se Acknowledgements. This work was supported financially by the Swedish Natural Science Research Council (NFR). Calculations were done on the supercomputers of Nationellt Superdatorcentrum (NSC), Link?ping, Sweden. The authors thank the NSC for a generous allotment of computer time.  相似文献   

18.
We propose a general model for the spherically averaged exchange hole corresponding to a generalized gradient approximation (GGA) exchange functional. Parameters are reported for several common GGAs. Our model is based upon that of Ernzerhof and Perdew [J. Chem. Phys. 109, 3313 (1998)]. It improves upon the former by precisely reproducing the energy of the parent GGA, and by enabling fully analytic evaluation of range-separated hybrid density functionals. Analytic results and preliminary thermochemical tests indicate that our model also improves upon the simple, local-density-based exchange hole model of Iikura et al. [J. Chem. Phys. 115, 3540 (2001)].  相似文献   

19.
《Mendeleev Communications》2014,24(3):145-146
  1. Download : Download full-size image
  相似文献   

20.
In this report, we describe the visible-laser desorption/ionization of biomolecules deposited on gold-coated porous silicon and gold nanorod arrays. The porous silicon made by electrochemical etching was coated with gold using argon ion sputtering. The gold nanorod arrays were fabricated by electrodepositing gold onto a porous alumina template, and the subsequent partial removal of the alumina template. A frequency-doubled/tripled Nd : YAG laser was used to irradiate the gold nanostructured substrate, and the desorbed molecular ions were mass-analyzed by a time-of-flight mass spectrometer. The desorption/ionization of biomolecules for both substrates was favored by the use of the 532-nm visible-laser, which is in the range of the localized surface plasmon resonance of the gold nanostructure. The present technique offers a potential analytical method for low-molecular-weight analytes that are rather difficult to handle in the conventional matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号