首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline titanium dioxide (TiO2) powders have been synthesized by sol–gel method using titanium tetrachloride (TiCl4) or tetrabutyl titanate (Ti(OC4H9)4 as precursors, different alcohols and calcination temperatures in the range from 400 to 650 °C. The photocatalytic activity of as-prepared powders has been tested for the degradation of metoprolol tartrate salt, a selective β-blocker used to treat a variety of cardiovascular diseases, and compared to photocatalytic activity obtained from Degussa P25. Nanosized TiO2 powders prepared from TiCl4 and amyl-alcohol, calcined at 550 °C, displayed an activity comparable to Degussa P25, whereas the sample from the same series, calcined at 650 °C, showed higher photocatalytic activity in the whole range of the catalyst loading. Structural, morphological and surface properties of synthesized TiO2 nanopowders have been investigated by XRD, SEM, EDS and BET measurements, as well as FTIR and Raman spectroscopy, in order to find out the material properties which enable rapid an efficient decomposition of metoprolol under UV radiation.  相似文献   

2.
The degradation of nitro aromatics like trinitrotoluene (TNT) released in the waste water from explosive process plants is the serious problem due to toxic and explosive nature of TNT. The poor response of TNT to biodegradation enhanced the gravity of the problem. We have demonstrated that high specific surface area TiO2–SiO2 nano-composite aerogel is promising photo catalyst in successful treating of TNT contaminated aqueous solution. The TiO2–SiO2 composite aerogel with nominal content of 20 and 50% TiO2, used as catalyst, were prepared by co-precursor sol–gel method using titanium isopropaxide and tetramethylorthosilicate as source of titania and silica, respectively. The XRD studies confirmed formation of anatase phase of crystalline TiO2 with nano sized crystallites. The TiO2–SiO2 aerogel showed specific surface area of 1,107 and 485 m2/g for the aerogels containing 20 and 50% TiO2, respectively. The 100 ppm TNT solution was treated, in 700 ml capacity reaction vessel, using H2O2 oxidizer and TiO2–SiO2 aerogel catalyst in presence of UV light (8 W UV lamp). Using TiO2–SiO2 (50/50) aerogel with surface area of 485 m2/g, we succeeded to reduce the TOC to 1 ppm within 3.5 h where as using TiO2/SiO2 (20/80) aerogel with surface area of 1,107 m2/g, the TOC was reduced to about only 7 ppm in the same time. It revealed that the combination of high TiO2 content and high specific surface area is an important factor to achieve effective and faster degradation of TNT for complete mineralization.  相似文献   

3.
Stable TiO2 sols were prepared using two non-aqueous sol–gel processes with titanium n-butoxide and titanium isopropoxide, respectively. Crystallization and phase transitions of powders and thin films were studied by ex situ and in situ X-ray diffraction. For both methods, TiO2 began to crystallize around 320 °C in air. Using helium instead of air during heat treatment slowed down the crystallization and substoichiometric powders were formed. TiO2 thin films were obtained by spin coating. The morphology of the films was evaluated using scanning electron microscopy. The films were homogeneous and transparent in the visible range. The effect of the heating atmosphere and the type of substrate was investigated.  相似文献   

4.
Undoped and zinc-doped TiO2 nanoparticles (Ti1−xZnxO2 where x = 0.00–0.10) were synthesized by a sol–gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–VIS spectrometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average grain size was determined from X-ray line broadening using the Debye–Scherrer relation. The crystallite size was varied from 10 to 40 nm as the calcination temperature was increased from 350 to 800 °C. The incorporation of 3–5 mol% Zn2+ in place of the Ti4+ provoked a slight decrease in the size of nanocrystals as compared to undoped TiO2. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology with a diameter of about 10–30 nm and length of several nanometers, which is in agreement with XRD results. Optical absorption measurements indicated a blue shift in the absorption band edge upon 3–5 mol% zinc doping. Direct allowed band gap of undoped and Zn-doped TiO2 nanoparticles measured by UV–VIS spectrometer were 2.95 and 3.00 eV at 550 °C, respectively.  相似文献   

5.
Mesoporous TiO2 with a high specific surface area was prepared from titanium sulfate solution in a simple sol–gel route, where formamide was used as pH adjusting agent. TiO2 had a high resistance to phase transformation, and maintained monophasic anatase after calcinating at 600 °C. The highest specific surface area achieved on the prepared samples is 231.90 m2 g−1 after calcinating at 450 °C.  相似文献   

6.
This paper explores the possibility of making coatings with super friction-reducing and wear protection properties by using both sol–gel and self-assembling techniques. The thin film of TiO2 was firstly prepared on glass substrates via a sol–gel method, followed by sintering at 480°C. The self-assembled monolayer of Fluoroalkylsilane (FAS) were then prepared on TiO2 thin film to obtain TiO2–FAS dual-layer film. The contact angle measurement and X-ray photoelectron spectroscopy were used to determine the wetting behavior and chemical structure of films, respectively. The friction behavior of films sliding against a steel ball was examined on a macro friction and wear tester. It is shown that FAS is strongly adsorbed on sol–gel derived TiO2 thin film, making it strongly hydrophobic. Good friction-reducing and wear protection behavior is observed for the glass substrate after duplex surface-modification with sol–gel TiO2 and top layer of FAS.  相似文献   

7.
Mono- and multilayer HfO2 sol–gel thin films have been deposited on silicon wafers by dip-coating technique using a solution based on hafnium ethoxide as precursor. The densification/crystallization process was achieved by classical annealing between 400 and 600 °C for 0.5 h (after drying at 100 °C). Systematic TEM studies were performed to observe the evolution of the thin film structure depending on the annealing temperature. The overall density of the films was determined from RBS spectrometry correlated with cross section (XTEM) thickness measurements. After annealing at 450 °C the films are amorphous with a nanoporous structure showing also some incipient crystallization. After annealing at 550 °C the films are totally crystallized. The HfO2 grains grow in colonies having the same crystalline orientation with respect to the film plane, including faceted nanopores. During annealing a nanometric SiO2 layer is formed at the interface with the silicon substrate; the thickness of this layer increases with the annealing temperature. Capacitive measurements allowed determining the value of the dielectric constant as 25 for four layer films, i.e. very close to the value for the bulk material.  相似文献   

8.
Thin films being composed of a nanoporous SiO2 network and silica nanoparticles were prepared on glass substrates by sol–gel processing. The surfaces combine anti-reflective (AR) and anti-soiling properties as demonstrated in laboratory testing and long term outdoor exposure. Films were characterized by scanning electron microscopy (SEM). It is shown that both, the structure of the nanoporous matrix as well as the particle density, contribute to this effect, the influence of relative humidity (RH) during dust exposure was investigated. Due to their generally improved solar transmittance and dust-repellant properties the coatings are believed to have a vast potential for many photovoltaic and solar thermal applications.  相似文献   

9.
Nickle and iron doped TiO2 thin films were prepared on glass substrates by sol–gel dip coating process. Indirect and direct optical energy gaps were calculated with the incorporation of different concentrations of both the ions. Indirect bandgap was found to be a strong function of the dopant concentration, whereas direct energy gap has negligible dependence on the nature of dopant and its concentration. Direct energy gap has always been found to retain a value higher than the indirect energy gap. Variation of observed energy gap properties shows a trend similar to that reported on the basis of numerical calculations or the samples obtained by other techniques. Increase in refractive index and corresponding density of the film sample does not support the change in turn over frequency. The influence of crystalline phase change is also ruled out by XRD investigations. It is concluded that red shift of band edge absorption takes place by incorporation of dopant and sol–gel dip coating technique offers an effective low cost route to the production of these coatings.  相似文献   

10.
This paper focuses on the synthesis of nanocomposite materials, TiO2/SAPO-34, using the sol–gel method, which involves preparing a mixture between as-synthesized or calcined SAPO-34 zeolite and TiO2 gel under hydrothermal crystallization and then calcining it at 400 °C for the formation of the TiO2 anatase phase. The structural and textural features of the obtained materials were determined by various physico-chemical techniques such as thermogravimetric analysis, X-ray diffraction, scanning electronic microscopy, nitrogen sorption at 77 K, energy dispersive X-ray analysis and ultraviolet–visible spectrometry. The DRX results showed that calcination at 400 °C of the mixture between the calcined SAPO-34 and TiO2 gel led to the collapse of the original framework of zeolite, but formed the anatase TiO2 in a nano-spherical morphology; however, the use of as-synthesized SAPO-34 supports provides a mixture phase between SAPO-34 and TiO2 anatase after calcination. The photocatalytic properties of the SAPO-34/TiO2 and TiO2-type materials were tested for the removal of methylene blue (MB) dye. The MB degradation proved to increase as a function of contact time, catalyst mass and the initial concentration of MB.  相似文献   

11.
In this study, the role of TiO2 MT-150A loading in the polymeric sol was investigated for the synthesis of immobilized TiO2 nanocomposite films on glass substrate using the MT-150A nanoparticles-modified sol–gel method. The nanocomposite film properties were examined using different material characterization techniques including X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, UV–Vis spectrophotometer, Scotch tape test and pencil hardness test. The hydrophilicity of films during UV/Vis irradiation and storage in a dark place were evaluated by a contact angle analyzer. The MT-150A loading had a significant effect on the amount of crystallite phases in the films. However, increasing the MT-150A loading in the sol resulted in an increase in rutile phase content. In addition, increasing MT-150A loading in the sol yielded films with higher hydrophilicity but a concentration of 10–30 g/L MT-150A in the sol was found as the maximum for obtaining films with good adherence on the glass substrate.  相似文献   

12.
In this paper, the coatings with friction-reducing properties were investigated using both sol–gel and self-assembling techniques. The thin film of TiO2 was firstly prepared on glass substrates via a sol–gel method, followed by calcinating at 480 °C. The films of fatty acid were then deposited on the TiO2 surface to obtain a dual-layer film. The contact angle measurement and FT IR spectroscopy were used to determine the wetting behavior and chemical structure of films, respectively. The friction-reducing behavior of films sliding against a steel ball was examined on a macro friction and wear tester. It is found that fatty acid is strongly adsorbed on sol–gel derived TiO2 surface. Good friction-reducing behavior is observed for the glass substrate after duplex surface-modification with TiO2 surface obtained by sol–gel method and top layer of fatty acid.  相似文献   

13.
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol–gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600°C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5–42.5 nm while the thickness of SiO2 shell attained 1.5–3.5 nm approximately.  相似文献   

14.
Molybdenum trioxide (MoO3) films were deposited on ITO/Glass substrates by the sol–gel method using a spin-coating technique and heat treated at various temperatures under different ambient atmosphere. Effects of the process parameters on the electrochromic properties of MoO3 films were studied using cyclic voltammetry (CV) in a propylene carbonate (PC) non-aqueous solution containing 1 M lithium perchlorate (LiClO4). Electrochromic MoO3 film on lithium intercalation was investigated by in-situ transmittance measurement during the CV process. The MoO3 films showed reversible recharge ability on Li+/e intercalation/deintercalation. Experimental results revealed that the heat-treatment temperature, the ambient atmosphere, and the thickness will have the string influence on the electrochromic properties of MoO3 thin films. X-ray diffraction (XRD) results show that the amorphous MoO3 films can be obtained with the heat-treatment temperature below 300 °C in O2 ambient atmosphere. The optimum electrochromic MoO3 film, with a thickness of 130 nm, exhibits a maximum transmittance variation (ΔT%) of 30.9%, an optical density change (ΔOD) of 0.213, an intercalation charge (Q) of 8.47 mC/cm2, an insertion coefficient x in Li x MoO3 was 0.21 and a coloration efficiency (η) of 25.1 cm2/C between the colored and bleached states at a wavelength (λ) of 550 nm.  相似文献   

15.
Highly stable TiO2 sols were prepared by adjusting the water-to-titanium molar ratio to ~4 in the process of hydrolysis and condensation of titanium isopropoxide in ethanol with HNO3. Particularly, long-term stable TiO2 sols were prepared without adding any chemical additives. Anatase TiO2 nanocrystallites with sizes of 3–5 nm in diameter were uniformly dispersed in the stable sol. Crystallized TiO2 films were successfully deposited on Si (100) using the stable sol via a dip-coating process with low temperature curing at as low as 100 °C. The synthesized TiO2 sols and films are promising for use in flexible or dye-sensitized solar cells.  相似文献   

16.
We have studied structural and optical properties of thin films of TiO2, doped with 5% ZnO and deposited on glass substrate (by the sol–gel method). Dip-coated thin films have been examined at different annealing temperatures (350–450 °C) and for various layer thicknesses (89–289 nm). Refractive index, porosity and energy band gap were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.97–2.44, the porosity is in the range of 0.07–0.46 and the energy band gap is in the range of 3.32–3.43. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZnO, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 20.23 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range of 8.61–29.48 nm.  相似文献   

17.
Response surface methodology (RSM) based on central composite design (CCD) was successfully applied to the optimization and modeling of densification of nanocrystalline Al2O3 powder prepared by sol–gel method. The effects of three operating variables, sintering temperature, calcination temperature and milling time on the densification of nanocrystalline Al2O3 were systematically evaluated. A quadratic model for densification was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The simulated values obtained from the statistical model were in conformity with the experimental results within an average error of ±1.5%. The optimum operating conditions for densification were found to be 1,579 °C of sintering temperature, 909 °C of calcination temperature and 117 min of milling time. The obtained density under the optimum conditions determined by RSM was 98.5%. The results confirmed that RSM based on central composite design was an accurate and reliable method to optimize the densification conditions of nanocrystalline Al2O3 powder.  相似文献   

18.
This work aims to elucidate whether the hypothesis of zero oxygen at the mixture layer when flame takes place is assumable for every kind of material. For that purpose, we investigated the oxygen concentration there by cone calorimeter tests. A modified holder was developed in order to collect oxygen in this mixture layer. In addition, thermogravimetric tests were carried out so as to relate the possible effects of the presence of oxygen in the atmosphere where the pyrolysis process takes place, since the cone calorimeter does not allow to control the oxygen level of the atmosphere during the experiment. The reaction rates and per cent of residue in the cone calorimetric tests were measured and compared with the results from thermogravimetric tests. Six products were analysed which can be classified in three main groups: lignocellulosic, thermoplastic polymers and thermoset polymers. Cone calorimetric results showed that for some of the materials analysed (PET, Nylon and PUR foam) the oxygen level at mixture layer decreased until values close to zero. The comparison of reaction rates between cone calorimetric and thermogravimetric tests revealed the char layer created in cone calorimetric tests over the exposed face for brushed fir, Nylon and PET established an important heat barrier that modifies the thermal behaviour of these materials.  相似文献   

19.
To enhance the poor scratch resistance of polycarbonate, a silica (SiO2) and titania (TiO2) transparent inorganic coatings was designed and synthesized using a microwave assisted sol–gel heating. Due to the transparency of PC to microwave, the idea was to obtain a localized heating only on the coating film. The obtained films were fully characterized to mainly evaluate the effect of titania content, added both as nanoparticles and from tetraethyl orthotitanate, TEOT, on scratch resistance and surface morphology. Particular attention was paid to preserve the transparency of the final product. The results allowed to define that TEOT addition enhances the adhesion between coating and polycarbonate, even if the optimized quantity have to be defined in order to avoid a decrease of coating mechanical resistance. In this work optimized TEOT level results to be the associated to 5 wt% of TiO2, which enable the better balancing between adhesion and mechanical resistance performances.  相似文献   

20.
Novel ammonia and triethanolamine assisted sol–gel synthesis method was developed to fabricate the N-doped TiO2 hollow spheres. The prepared hollow spheres were in submicron size and had good morphology and high specific surface area. Polystyrene (PS) latexes in size of 470 nm were used as the templates to fabricate PS/TiO2 core–shell spheres. Here ammonia and triethanolamine was first employed together to control the sol–gel process. The N-doped TiO2 hollow spheres were got after calcinations of the core–shell spheres by using triethanolamine as N source, and the amount of doped N could be easily adjusted by changing the amount of triethanolamine. The hollow spheres had distinct visible light response, and the optical response shifted more to the visible region as the amount of doped N increases. The photodegradation of methylene blue expressed the high photocatalytic activity of the N-doped TiO2 hollow spheres under visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号