首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper outlines an analysis of the traveling performance of a lunar rover. The analysis is in the form of numerical simulations and it uses soil properties, identified in vacuum, and mechanics of wheel-based travel. The wheel-to-ground contact model and soil parameters are determined first so they could be used in the numerical simulation. A soil test device is introduced and the soil parameters are identified from plate-pressing and shear tests. Finally, numerical simulations are conducted using the parameters identified and their results are discussed along with those of the traveling tests conducted in vacuum. The soil tests indicated that the wheel sinkage into the ground can increase in vacuum and that the shear stress acting beneath the wheel in vacuum is almost the same as that in the atmosphere. Because of these trends, the simulations and traveling tests showed that the traveling performance of the wheel can decrease in vacuum. Although it has been widely considered that the vacuum environments enhance the traveling performance of the wheel, this study confirmed that it is not always the case.  相似文献   

2.
A simplified, closed-form version of the basic mechanics of a driven rigid wheel on low-cohesion deformable terrain is presented. This approach allows the formulation of an on-line terrain parameter estimation algorithm, which has important applications for planetary exploration rovers. Analytical comparisons of the original and simplified equations are presented, and are shown to closely agree. Experimental results from a single-wheel testbed operating in dry sand shows that the simplified equations can be used for mobility prediction with good accuracy. Methods for incorporating the simplified equations into an on-line terrain parameter algorithm are discussed.  相似文献   

3.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   

4.
5.
Nowadays soft soil–wheel contact models are widely used for predicting the mobility of rovers in off-road applications. However, most of the contact models used in computer simulations are based on semi-empirical laws for which soil parameters can be assessed only with large uncertainty. This lack of knowledge results in significant uncertainty on the rover position predictions. Applied to a planetary rover model, this paper illustrates probabilistic and non-probabilistic techniques for efficient treatment of soil parameter uncertainty for rover position predictions.  相似文献   

6.
Grouser wheels have been used in planetary rovers to improve mobility performance on sandy terrains. The biggest difference between a wheel with and without grousers is the soil behavior beneath the wheel as the grousers shovel the soil. By analyzing the soil flow, we gain insight into the mechanics dominating the interaction between the wheel and the soil, directly impacting performance. As the soil flow varies depending on the soil properties, the effects of soil type on soil behavior and wheel-traveling performance should be studied. This paper reveals the difference in soil flow and wheel performance on cohesive and non-cohesive soils. We conducted a series of single wheel tests over different types of soils under several wheel-traveling conditions. Soil flow was visualized by using particle image velocimetry (PIV). The experimental results indicate that soil flow characteristics highly depend on the shear strength of the soil. The cohesive soil exhibited lower fluidity due to its higher shear strength. At the same time, the wheel displayed a higher traveling performance over the cohesive soil, that is, a lower slip ratio.  相似文献   

7.
The purpose of this study is to analyze the performance of a lugged wheel for a lunar micro rover on sloped terrain by a 2D discrete element method (DEM), which was initially developed for horizontal terrain. To confirm the applicability of DEM for sloped terrain locomotion, the relationships of slope angle with slip, wheel sinkage and wheel torque obtained by DEM, were compared with experimental results measured using a slope test bed consisting of a soil bin filled with lunar regolith simulant. Among the lug parameters investigated, a lugged wheel with rim diameter of 250 mm, width of 100 mm, lug height of 10 mm, lug thickness of 5 mm, and total lug number of 18 was found, on average, to perform excellently in terms of metrics, such as slope angle for 20% slip, power number for self-propelled point, power number for 15-degree slope and power number for 20% slip. The estimation of wheel performance over sloped lunar terrain showed an increase in wheel slip, and the possibility exists that the selected lugged wheel will not be able to move up a slope steeper than 20°.  相似文献   

8.
The deformation behaviour of the soil during dynamic wheel–soil interaction was studied by using the discontinuum modelling technique, distinct or discrete element method (DEM). The simulation model was developed using DEM for two types of soil, soil-A (coarse sand) and soil-B (medium sand). A transparent sided soil bin was used to observe the soil deformation. Three CCD video camera photographic images of the validation experiments were analyzed and compared with the simulation program results.This paper presents the simulation and validation results for two types of soil at three different vertical loadings of 4.9, 9.8 and 14.7 N. Wheel sinkage, vertical and horizontal draft force acting on the rigid wheel and the soil deformation images from the validation experiments were some of the data used to compare the simulation program results with the validation experiments. The simulation program was helpful to understand the complex deformation behaviour of the soils. The simulated results for the deformation behaviour of soil-B showed better correlation with the validation experiments than soil-A. The results obtained have also been compared with the previous work on DEM to explain phenomena such as the high simulated sinkage of the rigid wheel.  相似文献   

9.
The last version of the ISTVS standards was published in the Journal of Terramechanics in 1977. Since then, the document has not been updated, although new concepts, techniques, testing procedures, and technology have been developed in the last 40 years, which renders some content of the 1977 ISTVS standards outdated and in-complete. The ISTVS identified as a priority the need to develop a set of standards for terminology and testing for modern day research on off-road mobility. This paper, for which the work has been funded in part by ISTVS, is an updated version of the 1977 ISTVS standards and covers a range of aspects in off-road mobility for: vehicles, tires, tracks, soil, wheels, modelling approaches, test methods, and equipment.  相似文献   

10.
This paper presents an efficient method for increasing the accuracy of one key step regarding the process of determining a mobility map. That is, the interpolation of the original Digital Elevation Model (DEM) to a finer resolution before running multi-body-dynamics simulations. Specifically, this paper explores the use of fractal dimension and elevation range metrics for increasing the accuracy and reducing the computation time associated with the spatial interpolation ordinary kriging method. The first goal is to ensure the stationary variogram requirement. The second goal is to reduce kriging error or variance in the new predicted values. A novel segmentation-based approach has been proposed to divide the regions of interest into segments where stationarity is ensured. Empirical investigation based on real DEMs indicates the generality of the segmentation approach when natural and man-made terrains are considered. The proposed method leads to a more efficient computation burden and to more accurate results than the traditional approach.  相似文献   

11.
This paper reports a vision-based technique of measuring the spatio-temporal deformation of excavated soil for estimating the bucket resistive force. The proposed measurement technique uses two depth cameras to determine three-dimensional soil-surface displacement. The technique consists of the following two processes: the first is related to image correlation between the two cameras, and the second involves data filtering and smoothing for generating soil deformation as a continuously curved surface. The proposed technique delivers measurement accuracy to the nearest centimeter. Typical experimental results of the three-dimensional measurement of soil deformation using the proposed technique are presented in the paper. Further, this study updates an interaction model for the resistive-force estimation while a bucket excavates soil. The model introduces a correction variable that changes with the bucket wrist angle by exploiting the experimental measurement of soil deformation. The model estimates the resistive force with an error of less than one quarter of the maximum force. These updates also exhibit the effectiveness of the proposed technique.  相似文献   

12.
Full-scale tests were carried out within the broader framework of a study of an operational mechanical mine clearance system. This system is made up of a tracked machine pushing a mine clearance plow that scarifies the soil to approximately 30 cm depth. This study examines the capacity of the tractor to move on a disturbed soil. This paper presents motion resistance tests and drawbar pull tests on four types of soil. The soils have been chosen to be scientifically representative of the broad distribution on our planet: a sand (frictional soil), a silt (cohesive soil), a silty gravel (coarse-grained soil), and a silty sand (cohesive soil). The tests are performed in two configurations: on compacted soils and on soils scarified with an experimental plow. The results of each test condition are described. The effects of the soil type, its state, and the speed of the tested vehicle are presented. Using these results and, in addition, full-scale tests of scarification, we present an operational analysis determining the mobility of a tracked vehicle on broken soil. This method makes it possible to calculate the maximum speed of a mechanical mine clearance system for the whole range of soils tested.  相似文献   

13.
How to calculate the effect of soil conditions on tractive performance   总被引:1,自引:0,他引:1  
The paper presents an analysis and quantitative evaluation of the effect of soil conditions on tractive performance of off-road wheeled and tracked vehicles. The results of this study indicated that to accurately calculate the tractive performance of a vehicle in a given soil condition, soil properties and parameters and their changes as functions of soil moisture content and density should be taken into account. An effective Tractive Performance Analytical (TPA) model which takes into consideration the effect of soil conditions on tractive performance of the vehicles is developed. The TPA model uses invariant soil parameters that can be given or measured before the calculations by routine methods of classical soil mechanics. Soil parameters can also be obtained by recommended empirical equations using four physical soil parameters measured in the field with hand held instruments without time consuming and costly plate or vehicle tests. The model was validated in different soil conditions and compared with other models used in terramechanics for tractive performance predictions. The paper includes also an analysis of capabilities and limitations of the observed models.  相似文献   

14.
Determination of the soil pressure distribution around a cone penetrometer   总被引:2,自引:0,他引:2  
The objective of this paper was to investigate the pressure distribution around a cone penetrometer using a pressure sensing mat under laboratory conditions. The investigation was conducted under (1) constrained conditions using cylindrical split pipe molds and (2) unconstrained conditions using a soil box. These tests were conducted in Capay clay and Yolo loam soil containing two different moisture conditions and two compaction levels.In the constrained tests, a maximum radial pressure of 111 kPa was observed in the Capay clay soil with 3.4–4.3% d.b. moisture content and three blows of compaction (cone index value of 2040 kPa) when using the 41 mm diameter split pipe mold. These pressure levels decreased to 82 and 22 kPa, respectively, when 65 and 88 mm diameter molds were used. In both the Capay clay and Yolo loam tests, the average radial pressure and average cone index values showed similar trends.In the unconstrained tests, a maximum pressure of 9.0 kPa was observed in the Capay clay with 4.5% d.b. moisture content and three blows of compaction (cone index value of 550 kPa) at a horizontal distance of 25.4 mm from the vertical axis of the cone penetrometer and minimum pressure levels in the range of 0.2–0.3 kPa when the horizontal distance of the penetrometer was in the range of 56.8–66 mm. The pressure levels are much smaller than the ones obtained in the constrained tests and may suggest that the pressure distribution under field conditions is small at a distance of 25.4 mm or higher from the tip of the cone.The experimental data were statistically analyzed to identify significant factors. The results of the analysis for the constrained test indicated that the mold diameter and number of blows significantly increased the pressure readings within the soil mass. Increasing the mold diameter led to a decrease in the average radial pressure and increasing the number of blows contributed to an increase in the average radial pressure. In the unconstrained test, the average radial pressure distribution at a given point were significantly influenced by the horizontal distance of the point from the vertical axis passing through the center of the penetrometer shaft, soil type, and soil moisture content. Higher pressure values were obtained in the Capay clay tests compared to the Yolo loam tests. In all cases, the pressure levels were greater for the drier soil than for the moist soil.  相似文献   

15.
Tractive performance, as well as soil stresses under a vehicle equipped with two types of tyres, was investigated in this study. All-season and snow tyres were installed in a 14 T 6 × 6 military truck and the vehicle was driven over sandy and loess soil for drawbar pull tests. Simultaneously, the stress state was determined in the ground surface under the driving wheels. Effects of tread pattern on both traction curves and soil stress were analyzed for three different levels of vehicle loading. All-season tyres provide slightly better traction for both terrain surfaces, at all three loading levels, or the differences between traction measures are not significant. Soil stress analysis showed that the difference between the two tread patterns is not significant. Generally, on soft surfaces all-season tyres performed no worse than snow tyres, while they are pronouncedly better for highway use.  相似文献   

16.
The Mualem-Van Genuchten equations have become very popular in recent decades. Problems were encountered fitting the equations’ parameters through sets of data measured in the laboratory: parameters were found which yielded results that were not monotonic increasing or decreasing. Due to the interaction between the soil moisture retention and the hydraulic conductivity relationship, some data sets yield a fit that seems not to be optimal. So the search for alternatives started. We ended with the cubical spline approximation of the soil physical characteristics. Software was developed to fit the spline-based curves to sets of measured data. Five different objective functions are tested and their results are compared for four different data sets. It is shown that the well-known least-square approximation does not always perform best. The distance between the measured points and the fitted curve, as can be evaluated numerically in a simple way, appears to yield good fits when applied as a criterion in the optimization procedure. Despite an increase in computational effort, this method is recommended over the least square method.  相似文献   

17.
Modification of some soil mechanical properties (penetration resistance and consolidation pressure) induced by vehicle compaction during mechanized forest exploitation was studied in an acid and loamy leached forest soil of the loessic belt of central Belgium. In situ penetration tests and laboratory Bishop–Wesley cell tests were undertaken for the two main soil horizons of a beech high-forest, i.e. the eluvial E horizon (5–30 cm depth) and the underlying clay-enriched Bt horizon (30–60 cm depth). Both undisturbed and wheel-rutted soil areas were studied (E and Bt horizons vs. Eg and Btg horizons).

Results show that: The experimental overconsolidation pressure of the eluvial reference horizon (E) is about 50 kPa higher than the value calculated from soil overburden pressure; this probably results from suction action during dry periods. The clay-enriched reference horizon (Bt) shows the same trends. In wheel-rutted areas, seven years after logging operations, the Eg horizon memorizes only 14.5% of the wheel induced stress due to forest machinery.

In the compacted Btg horizon, the experimental overconsolidation pressure represents 96% of the exerted theoretical stresses due to harvesting actions. The good recording of the exerted stresses, after seven years, can be explained by: (1) The Btg depth which keeps it from seasonal variations i.e. from desiccation–moistening or freeze–thaw cycling; (2) amorphous and free iron accumulation inducing a “glue” effect of the Btg soil matrix, which could stabilize the soil structure and prevent recovery to initial conditions. These results provide clear evidence that on loessic materials, soil compaction due to logging operations leads to modifications in both physical (bulk density, total porosity) and mechanical (penetration resistance and consolidation pressure) soil properties.  相似文献   


18.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

19.
通过现场实验和数值模拟分析了软土地基在爆炸荷载作用下长期和瞬间的变形特性,分析了影响爆炸效果的主要因素和条形药包爆炸后冲击波的显著影响范围,并讨论了爆炸固结法处理软土地基的作用机理,表明该法具有加快固结速度的特点,有利于提高施工速度,缩短工期。  相似文献   

20.
The US Army is required to be a good steward of the land per US Army regulation AR 200-1. Based on this regulation, Army installations need to manage lands, to reduce potential damage and impacts to water quality and habitat that may occur from training. Maneuver training does impact the vegetation and soil and this damage is directly related to soil moisture. Soil moisture is an important factor for understanding the potential for soil surface disturbance due to vehicle impacts and predicting soil resilience to vehicle traffic, however, producing accurate estimates of the spatial and temporal variation of soil moisture has historically been elusive. GeoWATCH, which stands for Geospatial Weather-Affected Terrain Conditions and Hazards (formerly DASSP), simulates soil moisture world-wide, at relatively small spatial and temporal scales. GeoWATCH uses a physics-based downscaling approach that uses weather-scale land surface model estimates of soil moisture and land surface water and energy fluxes, with high resolution geospatial data. GeoWATCH soil moisture outputs coupled with vehicle impact models, are anticipated to be useful for near-real-time estimation of ground disturbance, but will require ground validation. To validate GeoWATCH soil moisture estimates, we utilized Soil Climate Analysis Network (SCAN) gauge network soil moisture data from 127 sites across 34 states. Statistical analysis of the raw GeoWATCH output indicated the model performs statistically better in certain soil textures. Model bias is largest for sandy soils, whereas clayey soils were least biased. As a result, bias correction models were applied to the raw GeoWATCH simulated values using linear regression to predict correction factor (CF) values based on physical site characteristics. The bias correction models significantly improved the performance of the GeoWATCH soil moisture model in terms of average performance statistics and number of statistically cally unbiased sites. This process could easily be incorporated into GeoWATCH, allowing for a capability to rapidly estimate vehicle impacts and determine rehabilitation requirements by installation land managers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号