首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Emulsion copolymerization of poly(methacrylic acid) and poly(2-(diethylamino)ethyl methacrylate) (PMAA/PDEA) yielded pH-responsive polyampholyte microgels of 200-300 nm in diameter. These microgels showed enhanced hydrophilic behavior in aqueous medium at low and high pH, but formed large aggregates of approximately 2500 nm at intermediate pH. To achieve colloidal stability at intermediate pH, a second batch of microgels of identical monomer composition were synthesized, where monomethoxy-capped poly(ethylene glycol)methacrylate (PEGMA) was grafted onto the surface of these particles. Dynamic light-scattering measurements showed that the hydrodynamic radius, Rh, of sterically stabilized microgels was approximately 100 nm at intermediate pH and increased to 120 and 200 nm at pH 2 and 10, respectively. Between pH 4 and 6, these microgels possessed mobility close to zero and a negative second virial coefficient, A2, due to overall charge neutralization near the isoelectric pH. From the Rh, mobility, and A2, cross-linked MAA-DEA microgels with and without PEGMA retained their polyampholytic properties in solution. By varying the composition of MAA and DEA in the microgel, it is possible to vary the isoelectric point of the colloidal particles. These new microgels are being explored for use in the delivery of DNA and proteins.  相似文献   

2.
Multiresponsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels were synthesized by precipitation polymerization in aqueous medium. Then silver-poly(N-isopropylacrylamide-co-methacrylic acid) hybrid microgels were prepared by in-situ reduction of silver ions. Formation of microgels was confirmed by Fourier transform infrared spectroscopic analysis. pH and temperature sensitivity of microgel was studied by dynamic light scattering. Hydrodynamic radius of microgels decreases with increase in temperature at pH 8.20 and show volume phase transition temperature around 45°C. At pH 2.65, hydrodynamic radius decreases with increase in temperatures upto 35°C but further increase in temperature causes aggregation and microgel becomes unstable due to increase of hydrophobicity. With increase in pH of medium, the hydrodynamic radius of microgels increases sigmoidally. Formation of silver nanoparticles inside microgel and pH dependence of surface plasmon resonance wavelength of the hybrid microgels were investigated by ultraviolet-visible spectroscopy. The value of surface plasmon resonance band and absorbance associated with surface plasmon resonance band increases with increases in pH of the medium. The apparent rate constant of reduction of p-nitrophenol was found to be linearly dependent on volume of hybrid microgels used as catalyst. The system has a potential to be used as effective catalyst for rapid degradation of industrial pollutant.  相似文献   

3.
Summary: pH-sensitive microgels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared by dispersion polymerization of 2-dimethylamino ethyl methacrylate in a mixed solvent of water/ethanol. 1HNMR, FTIR and SEM were used to confirm the chemical structure and morphological properties of the resulting microgels. Dynamic Light Scattering (DLS) was used to measure the hydrodynamic diameter of the particles. SEM micrographs showed that the microgel particles have a diameter of about 100–200 nm in dry state. Mean hydrodynamic diameter of the particles at their collapsed state at pH = 9.5 was found to be about 150 nm. DLS measurements at various pH values showed that the prepared microgels have a volume phase transition around pH = 8 at which the hydrodynamic diameter decreased from about 470 nm to around 150 nm corresponding to a 32 fold change in the mean volume of a microgel particle.  相似文献   

4.
The aggregation behavior of polybutadiene165-block-poly(L-lysine)88 in saline solution was studied by combined static and dynamic light scattering analyses. Vesicles were observed if the polypeptide segment was in a 100% coil conformation (pH 7.0) or in an 80% alpha-helical conformation (pH 10.3). At the higher pH, aggregates were smaller in size (hydrodynamic radius: 364 nm --> 215 nm) and chains were more densely packed at the core-corona interface (interchain distance: 3.2 nm --> 2.4 nm). Changes in size and structure could be explained in basic terms of colloid stabilization without considering a secondary structure effect.  相似文献   

5.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

6.
蛋白质与多糖的静电作用是生物体内一个基本医学-化学现象,是实现自组装的主要驱动力,可利用这种非共价作用设计和构筑理想的微结构。 以大豆分离蛋白(Soybean Protein Isolates,SPI)和壳聚糖(Chitosan,CS)为原料,采用浊度法考察了配比、溶液pH值、离子强度和温度对SPI与CS在溶液中相互作用的影响。 结果显示,由于pH值影响静电作用强度,从而成为影响SPI与CS相互作用的主要因素,其中,当pH值为5.5~6.6时,SPI与CS可以实现有效结合。在较低的离子强度下,有利于形成具有紧凑结构的CS/SPI聚集体,较高离子强度下聚集体发生解离。 蛋白质受热发生变性,多肽链上的疏水氨基酸残基暴露在溶液中,导致与壳聚糖链的疏水作用增强。 DLS结果显示,CS与SPI自组装形成了分布均一的纳米粒子,变性后的SPI与CS形成的纳米粒子粒径有所增大,分布均一;经戊二醛交联,粒径有所减小。 SEM显示,壳聚糖单层膜表面存在龟裂现象,与SPI形成双层膜后龟裂消失;同时,单层膜厚度约为300 nm,双层膜厚度约为500 nm。  相似文献   

7.
通过γ 射线辐照技术 ,在稀水溶液中实现了N ,N′ 亚甲基双丙烯酰胺 (Bis)与 4 乙烯基吡啶 (4 VP)的无皂乳液共聚 ,得到平均流体力学半径 (Rh)为 5 6~ 15 2nm的一系列微凝胶 ,并通过红外光谱、热分析、透射电镜进行了表征 .通过测定Rh、吸光度、凝胶比 ,研究了与Bis共聚的单体及比例、剂量和剂量率对微凝胶合成的影响 .结果表明 ,微凝胶的大小可以通过吸收剂量、单体相对含量的改变来进行控制 .最后 ,对微凝胶的形成机理进行了初步探讨 .  相似文献   

8.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

9.
The spontaneous nucleation under hydrothermal conditions often leads to aggregation of crystallizing particles, which is an undesired phenomenon when the goal is the preparation of nanocrystals with narrow particle size distribution. The present paper reports on the synthesis of boehmite nanocrystals under hydrothermal conditions. An aqueous aluminum chloride salt solution was first prepared, and the pH was increased to 11 using a 5 M sodium hydroxide solution. The hydrothermal treatment was performed at 160 degrees C for different periods of time. The system yielded relatively small (15-40 nm) boehmite crystallites aggregated into larger (160 nm) particles. To avoid the aggregation, a biocompatible polymer, sodium polyacrylate (NaPa) 2100, was employed as a size-/morphology-controlling agent. Thus, stable colloidal suspensions of rounded boehmite nanoparticles having a size between 15 and 40 nm were obtained at 160 degrees C for 24 h. Further, the effect of synthesis time on the morphological features of boehmite synthesized in such a NaPa-containing system was investigated. The increase of the synthesis time from 24 to 168 h resulted in the formation of very long boehmite fibers (1000-2000 nm) with an average diameter of about 10 nm. The boehmite samples were characterized by XRD, DLS, TEM, IR, N2 adsorption, and zeta potential measurements. The colloidal stability of the obtained suspension was also studied.  相似文献   

10.
In this work, physicochemical properties of two globular proteinsbovine serum albumin (BSA) having a molecular weight of 67 kDa and human serum albumin (HSA) having a molecular weight of 69 kDawere characterized. The bulk characteristics of these proteins involved the diffusion coefficient (hydrodynamic radius), electrophoretic mobility, and dynamic viscosity as a function of protein solution concentration for various pH values. The hydrodynamic radius data suggested an association of protein molecules, most probably forming compact dimers. Using the hydrodynamic diameter and the electropheretic mobility data allowed the determination of the number of uncompensated (electrokinetic) charges on protein surfaces. The electrophoretic mobility data were converted to zeta potential values, which allowed one to determine the isoelectric point (iep) of these proteins. It was found to be at pH 5.1 for both proteins, in accordance with previous experimental data and theoretical estimations derived from amino acid composition and p K values. To determine further the stability of protein solutions, dynamic viscosity measurements were carried out as a function of their bulk volume concentration for various pH values. The intrinsic viscosity derived from these measurements was interpreted in terms of the Brenner model, which is applicable to hard spheroidal particles. It was found that the experimental values of the intrinsic viscosity of these proteins were in good agreement with this model when assuming protein dimensions of 9.5 x 5 x 5 nm3 (prolate spheroid). The possibility of forming linear aggregates of association degree higher than 2 was excluded by these measurements. It was concluded that the combination of dynamic viscosity and dynamic light scattering can be exploited as a convenient tool for detecting not only the onset of protein aggregation in suspensions but also the form and composition of these aggregates.  相似文献   

11.
杜嬛  徐升华  孙祉伟  阿燕 《物理化学学报》2010,26(10):2807-2812
胶体粒子聚集速率常数实验值远低于理论值一直是被普遍关注的问题.聚集速率常数的理论推导是基于粒子的几何半径来考虑的,但决定粒子扩散速率及聚集速率的应该是粒子的流体力学半径(大于几何半径),因而它是使聚集速率常数实验值低于理论值的因素之一.影响流体力学半径的因素很多,其中,带电粒子在溶液中因表面存在双电层,会明显增大流体力学半径,造成聚集速率减慢.而双电层的厚度又随溶液中离子强度的不同而改变.本工作在聚集速率的公式中引入了修正因子,即几何半径与其流体力学半径之比,以修正由于用几何半径代替流体力学半径带来的误差.其中几何半径和流体力学半径可以分别用扫描电镜(SEM)和动态光散射(DLS)来测定.以两种粒径的聚苯乙烯带电微球为例,考察了在不同离子强度下,该误差的大小.结果发现,对于半径为30 nm的微球,用流体力学半径计算的慢聚集速率常数比理论值偏低约8%.该误差随离子强度增加而减少.对于快聚集情况,流体力学半径对聚集速率基本没有影响.  相似文献   

12.
Copolymer microgels based on N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) have been synthesized by free radical emulsion polymerization using N,N-methylenebisacrylamide (BIS) as a cross-linker. Synthesized microgels were characterized by Fourier transform infrared spectroscopy (FTIR). Then silver nanoparticles were fabricated in the synthesized microgels by in-situ reduction of AgNO3 with NaBH4. The formation of silver nanoparticles was confirmed by UV–Vis spectroscopy. The pH sensitivity of the copolymer microgels was investigated using dynamic light scattering technique (DLS). Hydrodynamic radius of P (NIPAM–MAA) microgels increases with increase in pH of the medium at 25°C. Surface plasmon resonance wavelength (λSPR) of silver nanoparticles increases with increase in hydrodynamic radius due to change in pH of the medium. The catalytic activity for the reduction of nitrobenzene (NB), an environmental pollutant, into aniline was investigated by UV–Vis spectroscopy in excess of NaBH4 using hybrid microgels as catalyst. The value of apparent rate constant (kapp) of the reaction was calculated using pseudo first order kinetic model and it was found to be linearly related to the amount of catalyst. The results were compared with literature data. The system was found to be an effective catalyst for conversion of NB into aniline.  相似文献   

13.
When heating a dilute sample of the binary system of tetraethyleneglycol dodecyl ether (C12E4) and water from the micellar phase (L1) into the two-phase region of a lamellar phase (L(alpha)), and excess water (W) vesicles are formed. During heating, one passes a region of phase separation in the micellar phase (L1' + L1') where the initial micelles rapidly fuse into larger aggregates forming the concentrated L1 phase (L1') with a structure of branched cylindrical micelles, a so-called "living network". The static correlation length of the micelles are increasing with increasing concentration, from ca. 10 nm to 80 nm in the concentration range of 0.0001 g/cm3-0.0035 g/cm3. The overlap concentration was determined to 0.0035 g/cm3. When the temperature reaches the L1' + L(alpha) region the network particles transform into bilayer vesicles with a z-average apparent hydrodynamic radius in the order of 200 nm depending on the composition. The size of the final vesicles depends on the extent of aggregation/fusion in the L1' + L1' region and hence on the rate of heating. The aggregation/fusion in the L1' + L1' is slower than diffusion-limited aggregation, and it is shown that 1/100 of the collisions are sticky results in the fusion event.  相似文献   

14.
Monodispersed microgels composed of poly(acrylic acid) (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating polymer networks (IPN) were synthesized by a two-step method, first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The growth kinetics of the IPN particle formation was obtained by measuring the turbidity and particle hydrodynamic radius (Rh) as a function of reaction time. IPN and PNIPAM microgels were characterized and compared by dynamic and static light scattering techniques. The concentrated aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermoreversible gelation. In contrast to polymer solutions of poly(NIPAM-co-AAc) that have the inverse thermoreversible gelation, our system can self-assemble into an ordered structure, displaying bright colors. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated with PAAc and PNIPAM networks, respectively.  相似文献   

15.
The synthesis of hydrosols of copper(II) basic salts by the hydrolysis of copper(II) nitrate in the presence of ammonia was developed. A pH range and an optimal molar ratio [Cu2+] : [OH] = 1.1 : 1.0, at which hydrosols stable with respect to sedimentation were formed, were determined. The average hydrodynamic radius of dispersed phase particles ranging from 220 to 280 nm was measured by the photon correlation spectroscopy. It was shown that the hydrosols can be stabilized by poly(vinyl alcohol), and its optimal concentration providing their aggregation stability was determined. The thresholds of fast coagulation of the initial and stabilized hydrosols in the presence of potassium chloride and ammonium sulfate were found.  相似文献   

16.
Using fluorescence correlation spectroscopy (FCS) we measure the translational diffusion coefficient of asphaltene molecules in toluene at extremely low concentrations (0.03-3.0 mg/L): where aggregation does not occur. We find that the translational diffusion coefficient of asphaltene molecules in toluene is about 0.35 x 10(-5) cm(2)/s at room temperature. This diffusion coefficient corresponds to a hydrodynamic radius of approximately 1 nm. These data confirm previously estimated size from rotational diffusion studied using fluorescence depolarization. The implication of this concurrence is that asphaltene molecular structures are monomeric, not polymeric.  相似文献   

17.
The structure factors, short- and long-time diffusion coefficients, and hydrodynamic interactions of concentrated poly(N-isopropylacryamide) microgel suspensions were measured with simultaneous static and dynamic three-dimensional cross-correlated light scattering. The data are interpreted through comparison to hard sphere theory. The structure factors are known to be described well by the hard sphere approximation. When the structure factor is fit to an effective hard sphere volume fraction and radius, the diffusion and hydrodynamic interactions are also well described by the hard sphere model. We demonstrate that one single hard sphere volume fraction is sufficient to describe the microgel structures, hydrodynamic interactions, and long- and short-time collective diffusion coefficients. This result is surprising because the particle form of the microgels at these temperatures is not rigid, but rather "fuzzy" spheres with dangling polymer chains.  相似文献   

18.
部分水解聚丙烯酰胺柠檬酸铝体系临界交联浓度的研究   总被引:6,自引:0,他引:6  
采用落球粘度计、核孔膜过滤、动态光散射 (DLS)和2 7Al NMR法 ,研究了高分子量、低浓度的部分水解聚丙烯酰胺 (HPAM)与柠檬酸铝 (AlCit)体系形成交联聚合物溶液 (LPS)的临界交联浓度 .研究结果表明 ,HPAM AlCit体系在聚合物浓度较低时 ,溶液中主要发生形成交联聚合物线团 (LPC)的交联反应 ,此时形成的是LPS ,聚合物浓度增加到某一临界值后 ,体系中形成线团后 ,存在线团间的交联 ,此时形成的是弱凝胶 .不同方法所测得的HPAM AlCit体系的临界交联浓度基本相同 ,对于粘均相对分子质量为 1 4× 10 7的HPAM ,在NaCl浓度为 2 0 0 0mg L ,交联比 2 0∶1时形成的交联体系 ,其临界交联浓度在 2 0 0~ 30 0mg L间 .  相似文献   

19.
杜滨阳 《高分子科学》2011,29(4):439-449
Utilizing the hydrolysis and condensation of the methoxysilyl moieties, organic-inorganic hybrid poly(N-isopropylacrylamide-co-acrylamide-co-3-(trimethoxysilyl)propylmethacrylate) P(NIPAM-co-AM-co-TMSPMA) microgels were prepared via two different methods. The first method was that the microgels were post-fabricated from the crosslinkable linear P(NIPAM-co-AM-co-TMSPMA) terpolymer aqueous solutions above the lower critical solution temperature (LCST) of the terpolymer. For the second method, the microgels were directly synthesized by conventional surfactant free emulsion copolymerization of NIPAM, AM, and TMSPMA. The hydrodynamic diameter and stability of the resultant P(NIPAM-co-AM-co-TMSPMA) microgels strongly depend on the pH and temperature of the microgel aqueous solution. The hydrodynamic diameters of the microgels decreased with increasing the measuring temperature. The phase transition temperature of the microgels was found to be around 34°C, which was independent of the initial terpolymer concentration and shifted to lower temperature with increasing the preparation temperature. Increasing the initial amount of AM will enhance the instability of the microgels at high pH values. Moreover, the P(NIPAM-co-AM-co-TMSPMA) microgels obtained from the linear terpolymer had more homogeneous microstructures as compared with the corresponding NIPAM/AM/TMSPMA microgels prepared by one step emulsion copolymerization as revealed by light scattering measurements.  相似文献   

20.
Cerium dioxide hydrosols are synthesized by peptizing with nitric acid a precipitate obtained by hydrolyzing cerium(III) nitrate. The synthesized sols are stable with respect to aggregation in both acidic (pH 1.5–3.0) and alkaline media (pH 9.0–11.0). The mean hydrodynamic radius of particles is about 25 nm. The isoelectric point corresponds to pH 6.2. The phase composition of sol particles is determined by X-ray diffraction at pH of the dispersion medium ranging from 1.5 to 3.0. The sol coagulation thresholds are determined in the presence of sodium nitrate and sulfate, as well as of mixed magnesium salt at various pH values of the dispersion medium. Assumptions are made concerning the nature of the aggregative stability of sols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号