首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel ABA‐type dumbbell‐like water‐soluble copolymers [D230(EI)4, D400(EI)4, and D400(EI)8] were synthesized by introducing ethylenimine (EI) groups into both sides of polyoxypropylenediamines via a simple in situ ethylamination of polyoxypropylenediamine with 2‐chloroethylamine hydrochloride. The structures of the resultant polymers were identified by Fourier transform infrared spectroscopy and 1H NMR. The percentages of primary, secondary, and tertiary amine present were determined by the potentiometric titration method after treatments with the appropriate chemicals of salicylaldehyde and acetic anhydride. The surface tension and solubilizing behavior of pyrene in the presence of these polymers in aqueous medium were also investigated, and the efficiency to reduce the surface tension and solubilizing behavior of pyrene depends on the attachments of EI to polymer backbone. The chelating properties of these polymers were examined quantitatively by ultraviolet–visible (UV–vis) spectroscopy in the presence of Cu2+ ions in aqueous solution, and continuous variation analysis revealed that the most stable complex is formed at the normality ratio of [N]/[Cu2+] = 3.0. UV–vis spectroscopy and transmission electron microscopy were used to evaluate the dumbbell‐like water‐soluble copolymer, D400(EI)8, as a stabilizer for preparing colloidal noble metal nanoparticles (Au and Pt) in aqueous solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1360–1370, 2003  相似文献   

2.
The complexation of Cu2+ by N-isopropyl-2-methyl-1,2-propanediamine (L) has been studied by potentiometric and spectrophotometric titration. The dominant complexes formed in this system are [CuL]2+, [CuL2]2+, [Cu2L2(OH)2]2+, and [CuL(OH)2]. The data were thoroughly tested for different models with [CuL(OH)]+, [CuL(OH)]+, [Cu(OH)]+, and [Cu2(OH)2]2+ as additional species. The importance of steric factors is indicated by the d-d* spectra: for [CuL2]2+, (λmax = 499 nm) the absorption maximum is shifted by 50 nm to high energies relative to [Cu(en)2]2+, (λmax = 549 nm), whereas the opposite is true for the 1:1 complexes ([CuL]2+ : λmax = 712 nm,s [Cu(en)]2+ : λmax = 660 nm).  相似文献   

3.
A tetragonal 123 phase with the composition close to CeLa2 { Cu 2 2+ } [Mg2+]O8 (the braces indicate the Cu(2) positions; the brackets indicate the Cu(1) positions) with the parameters a = b = 0.3909(3) nm, c = 1.6591(8) nm was prepared at 860°C under an oxygen atmosphere with an elevated oxygen pressure. When the lanthanum-for-barium substitution was incomplete, the resulting 123 phase had the composition close to CeLa1.7Ba0.3{ Cu 1.7 2+ } [Mg]O8 with the unit cell parameters a = b = 0.3868(3) nm, c = 1.6578(8) nm that contains Cu3+ in the Cu(2) positions. The partial substitution of barium for lanthanum (the melting point of barium oxide is almost 500°C lower that of the lanthanum oxide) appreciably facilitated the synthesis: the 123 phase in this sample was more than 90%. The existence of Cu3+ in the Cu(2) positions enhanced the electrical conductivity of the sample.  相似文献   

4.
The syntheses, structures, and characterization of six Ln3+–Cu2+–glycine (Hgly) coordination polymers are described in this paper. They represent three types of structures. Type I (Ln=La ( 1 ), Pr ( 2 ), and Sm ( 3 )) is a 1D catenarian polymer comprising [Ln2] nodes bridged by four cis‐Cu(gly)2 linkers. Type II (Ln=Eu ( 4 ) and Dy ( 5 )) is a 2D open framework with a 44‐net, composed of novel [Ln6Cu22] cluster nodes linked by trans‐Cu(gly)2 linkers. Furthermore, the inner structures of the [Ln6Cu22] nodes, and the connection mode between the nodes and linkers are slightly different for 4 and 5 . Type III (Ln=Er ( 6 )) is a 3D open framework with a novel 36?418?53?6 topology, made up of [Er6Cu24] cluster nodes and trans‐Cu(gly)2 linkers. The rich variety of the resulting structures owes itself mainly to the interselection between the dynamic control of metalloligands and cationic components. A transition from frequency dependence to frequency independence is observed in the field‐induced magnetization lag for 1 – 3 . The frequency dependence at low temperatures may come from the antiferromagnetic Cu? Cu interaction through the [Ln2] nodes, whereas the frequency independence may be due to the disappearance of the antiferromagnetic Cu? Cu interaction at high temperatures.  相似文献   

5.
Complex [Cu(tbt)Cl2]n (tbt = 1-tert-butyl-1H-tetrazole) was prepared by reaction of tbt with copper(II) chloride in solution. According to single-crystal X-ray analysis, this complex presents 1D coordination polymer, formed at the expense of double chlorido bridges between neighboring pentacoordinate copper(II) cations. 1-tert-Butyl-1H-tetrazole acts as monodentate ligand coordinated by CuII cations via the heteroring N4 atoms. The temperature-dependent magnetic susceptibility measurements of novel complex [Cu(tbt)Cl2]n as well as described previously 1D coordination polymer [Cu(tbt)2Cl2]n, and linear trinuclear complex [Cu3(tbt)6Br6], were carried out. Magnetic studies revealed that the copper(II) ions were weakly ferromagnetically coupled in polymeric copper(II) chloride complexes, whereas complex [Cu3(tbt)6Br6] showed antiferromagnetic coupling.  相似文献   

6.
One new two‐dimensional (2D) CuII polymer [Cu(CHDA)(H2O)]n ( 1 ) was synthesized solvothermally based on 1,1‐cyclohexanediacetic acid (H2CHDA) ligand. Single‐crystal X‐ray diffraction analysis reveals that 1 has a 2D framework structure consisting of paddle‐wheel dinuclear [Cu2] cluster unit and CHDA2– connector, which bears a 4‐connected sql network with Schläfli symbol of (44.62). Magnetic studies indicate the presence of strong antiferromagnetic coupling (J = –302 cm–1) between the two CuII ions in the paddle‐wheel dicopper(II) entity.  相似文献   

7.
The complex formation between CuII and the title compound (tet a) is studied by spectrophotometry and pH-stat techniques. Between pH 4 and 5,5 the reaction proceeds in two steps, the first giving a blue intermediate, Cu(teta)2+ (blue), exhibiting a broad absorption band at 620 nm. Titration with NaOH and the absorption spectrum suggest that, in the intermediate, CuII is coordinated to only two amino groups of the ligand. Both steps are slow compared to other complex formation reactions of CuII. The rate of the first step, in which Cu(tet a)2+ (blue) is formed, is given by v1 = k1 · [Cu2+] [(tet a) H]/[H+] with k1 = 2,7 · 10?6 s?1 at 40° and I = 0,1. In the second step the last two nitrogens of the quadridentate ligand are bound to CuII, giving the mauve end product. The rate of this step is given by v2 = k2 · [Cu(tet a)OH+ (blue)] [OH?] with k2 = 1,2 · 103 M?1 s?1 at 50° and I = 0,5.  相似文献   

8.
We show that the substitution of lanthanum by neodymium, whose oxide melts at a temperature 500°C lower than La2O3, appreciably facilitates the synthesis of 123 phases with their Cu(1) positions fully or selectively substituted by magnesium. 123 phases with unit cells doubled in plane ab (phases “336”) and with compositions close to Ce2(La1.4Nd2Ba0.6){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5498(5) nm, c = 1.6425(8) nm), and Ce2(La1.7Nd2K0.3){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5498(5) nm, c = 1.6488(8) nm), and Ce2(Nd3.4Ba0.6){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5474(5) nm, c = 1.6425 nm), where the parentheses indicate the Ba positions, the braces indicate the Cu(2) positions, and the brackets indicate the Cu(1) positions, were synthesized using modified nitrate technology at 810°C in flowing oxygen. The existence of Cu3+ in the Cu(2) positions endows the phases with electrical conductivity. The conductivity versus temperature curves show the semiconductor trend. The samples do not experience superconducting transitions up to 60 K.  相似文献   

9.
A 2-D coordination polymer, [Cu(1,2-en)23-I)2Cu22-I)2]n (1), was formed at room temperature by in situ insertion of [Cu(1,2-en)2]2+ guests into 1-D chains of a [Cu2I4]2? host [1,2-en?=?1,2-diaminoethane]. The structure of the complex was confirmed by single-crystal X-ray diffraction study. The shortest copper(I)–copper(I) distance within the complex is 2.89?Å.  相似文献   

10.
Blue single crystals of Cu[μ3‐O3P(CH2)2COOH] · 2H2O ( 1 ) and Cu[(RS)‐μ3‐O3PCH(C2H5)COOH] · 3H2O ( 2 ) were prepared in aqueous solutions (pH = 2.5–3.5). 1 crystallizes in space group Pbca (no. 61) with a = 812.5(2), b = 919.00(9), and c = 2102.3(2) pm. Cu2+ is fivefold coordinated by three oxygen atoms stemming from [O3P(CH2)2COOH]2– anions and two water molecules. The Cu–O bond lengths range from 194.0(3) to 231.8(4) pm. The connection between the [O3P(CH2)2COOH]2– anions and the Cu2+ cations yields a polymeric structure with layers parallel to (001). The layers are linked by hydrogen bonds. 2 crystallizes in space group Pbca (no. 61) with a = 1007.17(14), b = 961.2(3), c = 2180.9(4) pm. The copper cations are surrounded by five oxygen atoms in a square pyramidal fashion with Cu–O bonds between 193.6(4) and 236.9(4) pm. The coordination between [O3PCH(C2H5)COOH]2– and Cu2+ results in infinite puckered layers parallel to (001). The layers are not connected by any hydrogen bonds. Each layer contains both R and S isomers of the [O3PCH(C2H5)COOH]2– dianion. Water molecules not bound to Cu2+ are intercalated between the layers. UV/Vis spectra suggest three d–d transition bands at 743, 892, 1016 nm for 1 and four bands at 741, 838, 957, and 1151 nm for 2 , respectively. Magnetic measurements suggest a weak antiferromagnetic coupling between Cu2+ due to a super‐superexchange interaction. Thermoanalytical investigations in air show that the compounds are stable up to 95 °C ( 1 ) and 65 °C ( 2 ), respectively.  相似文献   

11.
Divalent copper coordination polymers containing an isophthalate ligand and a dipyridylamide ligand show different dimensionalities and topologies depending on pyridyl nitrogen donor disposition and the steric bulk of the substituent on the dicarboxylate aromatic ring. According to single‐crystal X‐ray diffraction, [Cu(ip)(3‐pna)]n ( 1 , ip = isophthalate, 3‐pna = 3‐pyridylnicotinamide) shows a (4, 4) layered grid structure based on {Cu2(OCO)2} dimeric units. {[Cu(ip)(3‐pina)]·H2O}n ( 2 , 3‐pina = 3‐pyridylisonicotinamide) exhibits similar dimeric units, but in contrast to 1 these are connected into a non‐interpenetrated 3D 658 cds network. Both [Cu(mip)(3‐pina)]n ( 3 , mip = 5‐methylisophthalate) and [Cu(meoip)(3‐pina)]n ( 4 , mip = 5‐methoxyisophthalate) display dimer‐based 41263 pcu networks in contrast to 2 . Use of 5‐hydroxyisophthalate (H2hip) as a precursor afforded a mixture of {[Cu2(hip)2(3‐pina)4]·9.5H2O}n ( 5 ) and [Cu(hip)(3‐pina)]n ( 6 ). Compound 5 shows a 2D interdigitated structure with [Cu(hip)]n coordination polymer layers featuring {Cu2(OCO)2} dimeric units and pendant 3‐pina ligands, while 6 also showed a dimer‐based 41263 pcu network. Use of the very sterically bulky 5‐tert‐butylisophthalate (tbip) ligand afforded the 1D chain coordination polymer {[Cu(tbip)(3‐pina)2(H2O)]·H2O}n ( 7 ), which contains isolated copper ions in contrast to 1 – 6 , and has a curious “butterfly“ resemblance. Very weak antiferromagnetic coupling is seen within the {Cu2(OCO)2} dimeric units in 1 . Thermal decomposition behavior is also discussed.  相似文献   

12.
In this study, covellite (CuS) nanoparticles were synthesized through a facile and low temperature thermal decomposition method using [Cu(sal)2]- oleylamine complex, (sal = salicylaldehydeato, prepared in situ from [Cu(sal)2] and oleylamine as the precursors), and sulfur as the Cu2+ source and S source, respectively. Scanning electron microscope, transmission electron microscope, electron diffraction and ultraviolet–visible absorption (UV–Vis) spectra were used for the characterization of the products. The effect of reaction parameters, such as the copper:sulfur molar ratio, the reaction temperature and the reaction time on the shape, size and phase of CuS nanostructures, was investigated. The results showed that the, covellite (hexagonal structure of CuS) with an average size between 20 and 45 nm could be obtained with the Cu:S molar ratio of 1: 3 at 105 °C for 60 min. With increasing the reaction temperature from 105 to 200 °C, non-stoichiometric Cu1.65S with the average size of 25–50 nm was obtained due to the different existing state of the released Cu2+ ions from the copper-oleylamine complex.  相似文献   

13.
Blue single crystals of Cu[μ2‐OOC(CH2)PO3H] · 2H2O ( 1 ) and Cu1.53‐OOC(CH2)PO3] · 5H2O ( 2 ) were prepared in aqueous solution. In compound 1 [space group C2/c (no. 15) with a = 1623.3(2), b = 624.0(1), c = 1495.5(2) pm, β = 122.45(1)°], Cu is coordinated by three oxygen atoms stemming from the hydrogenphosphonoacetate dianion and three water molecules to form a distorted octahedron. The Cu–O bonds range from 190.4(3) to 278.5(3) pm. The connection between the Cu2+ cations and the hydrogenphosphonoacetate dianions leads to a two‐dimensional structure with layers parallel to (101). The layers are linked by hydrogen bonds. In compound 2 [space group P1 (no. 2) with a = 608.2(1), b = 800.1(1), c = 1083.6(1) pm, α = 94.98(1)°, β = 105.71(1)°, γ = 109.84(1)°], two crystallographically independent Cu2+ cations are coordinated in a square pyramidal and an octahedral fashion, respectively. The Cu–O bonds range from 192.9(2) to 237.2(2) pm. The coordination of the phosphonoacetate trianion to Cu(1) results in infinite polyanionic chains parallel to [100] with a composition of {Cu(H2O)[OOC(CH2)PO3]}nn. Hydrated Cu(2) cations are accommodated between the chains as counterions. 1 and 2 show structural features of cation exchangers. Magnetic measurements reveal a paramagnetic Curie‐Weiss behavior. Compound 2 shows antiferromagnetic coupling between Cu2+ ions due to a super‐superexchange coupling. The UV/Vis spectra of 1 suggest three d–d transition bands at 763 nm (2B12E), 878 nm (2B12B2), and 1061 nm (2B12A1). Thermoanalytical investigations in air show that compound 1 is stable up to 165 °C, whereas decomposition of 2 begins at 63 °C.  相似文献   

14.
The new bis-macrocycle 1, 1′-[(1H-pyrazol-3], 5-diyl)bis(methylene)bis[1, 4, 7-triazacyclononane] ( 1 ) was synthesized and its complexation with Cu2+ studied. Potentiometric and spectrophotometric titrations indicate that, in addition to the mononuclear species [Cu(LH2)]4+, [Cu(LH)]3+, [CuL]2+, and [Cu(LH?1)]+, binuclear complexes such as [Cu2L]4+, [Cu2(LH?1)]3+, and [Cu2(LH-2)]2+ are also formed in solution. The stability constants and spectral properties of these are reported. The binuclear species [Cu2(LH?1)]3+ specifically reacts with an azide ion to give a ternary complex [Cu2(LH?1)(N3)]2+, the stability and structure of which were determined spectrophotometrically and by X-ray diffraction, respectively. The two Cu2+ ions are in a square-pyramidal coordination geometry. The axial ligand is one of the N-atoms of the 1, 4, 7-triazacyclononane ring, whereas at the base of the square pyramid, one finds the other two N-atoms of the macrocycle, one N-atom of the pyrazolide and one of the azide, both of which are bridging the two metal centres. In [Cu2(LH?1)(N3)]2+, a strong antiferromagnetic coupling is present, thus resulting in a species with a low magnetic moment of 1.36 B.M. at room temperature.  相似文献   

15.
16.
The adsorption and activation of NO molecules on Cu-ZSM-5 catalysts with different Cu/Al and Si/Al ratios (from 0.05 to 1.4 and from 17 to 45, respectively) subjected to different pretreatment was studied by ultraviolet-visible diffuse reflectance (UV-Vis DR). It was found that the amount of chemisorbed NO and the catalyst activity in NO decomposition increased with an increase in the Cu/Al ratio to 0.35–0.40. The intensity of absorption bands at 18400 and 25600 cm−1 in the UV-Vis DR spectra increased symbatically. It was hypothesized that the adsorption of NO occurs at Cu+ ions localized in chain copper oxide structures with the formation of mono- and dinitrosyl Cu(I) complexes, and this process is accompanied by the Cu2+...Cu+ intervalence transfer band in the region of 18400 cm−1. The low-temperature activation of NO occurs through the conversion of the dinitrosyl Cu(I) complex into the π-radical anion (N2O2) stabilized at the Cu2+ ion of the chain structure, [Cu2+-cis-(N2O2)], by electron transfer from the Cu+ ion to the cis dimer (NO)2. This complex corresponds to the L → M charge transfer band in the region of 25600 cm−1. The subsequent destruction of the complex [Cu2+-cis-(N2O2)] at temperatures of 150–300°C leads to the release of N2O and the formation of the complex [Cu2+O], which further participates in the formation of the nitrite-nitrate complexes [Cu2+(NO2)], [Cu2+(NO)(NO2)], and [Cu2+(NO3)] and NO decomposition products.  相似文献   

17.
This paper describes a metal–metal bonding technique using metallic Cu nanoparticles prepared in aqueous solution. A colloid solution of metallic Cu particles with a size of 54 ± 15 nm was prepared by reducing Cu2+ (0.01 M (CH3COO)2Cu) with hydrazine (0.6 M) in the presence of stabilizers (5 × 10?4 M citric acid and 5 × 10?3 M cetyltrimethylammonium bromide) in water at room temperature in air. Discs made of metallic materials (Cu, Ni/Cu, or Ag/Ni/Cu) were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas with help of the metallic Cu particle powder. Shear strength required for separating the bonded discs was 27.9 ± 3.9 for Cu discs, 28.1 ± 4.1 for Ni/Cu discs, and 13.8 ± 2.6 MPa for Ag/Ni/Cu discs. Epitaxial crystal growth promotes on the discs with a good matching for the lattice constants between metallic nanoparticles and metallic disc surfaces, which leads to strong bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A dicopper(II) complex can be covalently linked to palmitate/palmitoyl-oleoyl-phosphatidylcholine (PA/POPC) liposomes using the following one-pot strategy: preformed [Cu2(bpbp)(PA)](ClO4)2 (bpbp = 2,6-bis((N,N′-bis(2-picolyl)amino)methyl)-4-tertbutylphenolato) was incorporated into POPC liposomes with a loading of up to 10 mol%. Despite its shape and charge, the decoration of PA/POPC liposomes with {Cu2(bpbp)}3+ did not disrupt the liposome structure; however, the mean liposome diameter increased from about 130 nm (0 mol% dicopper complex) to about 150 nm (10 mol% dicopper complex). Single-crystal X-ray structures furnish ‘snapshots’ of the pH-dependent solution state derivatives of {Cu2(bpbp)}3+, and model the structure of the [Cu2(bpbp)(PA)]2+ head group at the surface of the liposomes. An impressive plasticity in the intramolecular non-bonded Cu….Cu distance for these ions, ranging from 3 to 4 Å, in [Cu2(bpbp)OH]2+, [Cu2(bpbp)(OAc)(H2O)]2+ and [Cu2(bpbp)(H2O)2]3+ allows for their utility as labile reagents in water. Remarkably, the flexible dicopper site is selective for a single carboxylate ligand, so that [Cu2(bpbp)(PA)]2+ is favoured even in the presence of other chemically similar oxoanions, such as CO32 ? , HCO3, NO3, ClO4, ReO4 and CF3SO3.  相似文献   

19.
A novel cyano-bridged three-dimensional mixed-valence Cu(II)/Cu(I) compound [Cu2(oxpn)][Cu(CN)2]2 (oxpn2− = dianion of N,N-bis(3-aminopropyl)oxamide) has been synthesized and structurally characterized. Single crystals of 1 formed by diffusion of Cu2(oxpn)Cl2 and K3[Cr(CN)5(NO)] in H2O for two months. The structure of the title compound consists of threefold interpenetrating 3D frameworks. In each 3D network, oxamidato-bridged dimeric [Cu2(oxpn)]2+ units connect 1D polymeric [Cu(CN)2] anions giving rise to a 3D structure. Room temperature magnetic measurement shows the presence of strong magnetic coupling between the Cu(II) ions. Electronic paramagnetic resonance spectrum measurements show the transitions due to the excited triplet state.  相似文献   

20.
An unexpected dinuclear Cu(II) complex, [Cu2(L2)2], has been synthesized via complexation of Cu(II) acetate monohydrate with a bis(Salamo) ligand H2L1. Catalysis of Cu(II) ions results in unexpected cleavage of two N–O bonds in H2L1, giving a dialkoxo-bridged dinuclear Cu(II) complex. Each Cu(II) complex possesses a Cu–O–Cu–O four-membered ring instead of the usual bis(Salamo) [Cu2L1] complex with H2L1. The H2L1 molecule is stabilized by intramolecular O1–H1?N1 hydrogen bonds and π?π stacking interactions linking adjacent molecules into a 1-D infinite zigzag chain. In the structure of the Cu(II) complex, intermolecular hydrogen bonds have stabilized the Cu(II) complex to form a self-assembling infinite 1-D linear chain. Furthermore, the H2L1 ligand shows intense photoluminescence with two emissions at ca. 370 and 464 nm upon excitation at 310 nm. The Cu(II) complex shows photoluminescence with maximum emission at ca. 423 nm upon excitation at 370 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号