共查询到18条相似文献,搜索用时 60 毫秒
1.
2.
硫化锌透镜中长波红外宽带增透膜的研制 总被引:4,自引:0,他引:4
硫化锌(ZnS)透镜由于其透光区域较宽,便于光学系统的装校而被经常应用于红外光学系统中,但是其作为基底,镀制中长波红外增透膜却具有相当大的难度,尤其是牢固度的问题。根据任务要求研制的增透膜是在3.5~3.9μm的中波红外波段及9~12μm的长波红外波段,平均透射率大于90%。由于长波红外区可选用的宽透射区材料较少,所以兼顾材料的选用、光谱特性及可靠性满足使用要求等几方面考虑,最终采用氟化钇(YF3)作为低折射率材料,经过多次实验,采用混蒸、离子辅助等工艺方法以及选取合适的基底温度,通过对其他工艺环节的不断改进,解决了在ZnS透镜上镀制宽带增透膜,由YF3膜层严重的应力作用而导致膜层龟裂的问题,最终研制成功符合使用要求,并且可靠性和光谱特性皆优的中长波红外增透膜。 相似文献
3.
0.6~1.55μm可见/近红外超宽带增透膜的研制 总被引:1,自引:0,他引:1
针对可见/近红外宽谱段光谱仪探测器窗口的使用要求,选择TiO2、M1和SiO2分别作为高、中、低折射率镀膜材料,通过不同方案对膜系进行了优化设计和比较。采用电子束蒸发兼离子束辅助沉积技术,通过不断调整工艺参数,得到了光学性能优良、制备重复性好、牢固度强且致密的可见近红外宽带增透膜。该增透膜在(650±10)nm、900~1 100 nm和(1470±10)nm三波段内平均透过率≥99%,在620~1 550 nm宽波段内整体平均透射率≥97%,满足了光谱仪探测器窗口的实际使用要求。 相似文献
4.
从实际应用出发,在0°入射的条件下,在ZnS基底上针对0.8~1.7 μm和3.7~4.8 μm两个红外波段,设计并制备了双波段红外增透膜。论述了材料选择、膜系设计和制备方法,最终使用等离子辅助沉积技术在ZnS窗口上制备出双波段红外增透膜,透过率及环境测试结果表明:在0.8~1.7 μm波段双面平均透过率大于95%,在3.7~4.8 μm波段双面平均透过率大于96%。膜层结合牢固并有良好的耐摩擦性能。 相似文献
5.
《光学学报》2010,30(4)
硒化锌材料具有较宽的透光区,使其在红外区有着广泛的应用,然而其作为基底,镀制超宽带增透膜却有相当大的难度,尤其是膜层强度问题。设计出了硒化锌基底上2~16μm的多层超宽带增透膜,并采用离子束辅助沉积工艺在硒化锌基底上进行了多次实验,并对所使用的氟化钇(YF_3)和硒化锌膜料进行了分析,发现YF_3在3400和1640 cm~(-1)两个波数处的吸收峰。通过将低折射率层改为氟化钡和氟化钇的组合层后,在硒化锌基底上成功镀制出了多层宽带增透膜并采用脉冲电弧离子镀技术在多层薄膜的表面镀制了一定厚度的类金刚石(DLC)薄膜,增强了膜层的强度。最终使硒化锌基底上镀制的超宽带增透膜在2~16μm范围内的平均透射比大于93%,峰值透射比大于97%,并且膜层的强度较好。 相似文献
6.
讨论了在单昌锗上为获得单波段(3-5μm)及双波段(3-5μm,8-12μm)兼容a-C:H增透膜所必需的膜系设计,及用椭偏法对该膜进行的增透结果分析。结果表明,a-C:H膜是理想的红外增透膜。椭偏法对分析所制备的膜是否符合膜系设计要求及沉积工艺参数的确定具有重要意义。 相似文献
7.
8.
红外吸收器在红外隐身、辐射制冷、红外探测、传感器等方面有重要的应用前景.一维光栅型吸收器由于其结构简单、易于加工的优势备受关注,然而其不足之处是频带很窄,且只对一种极化有效.本文提出了一种基于简单一维周期结构的双波段宽带吸收器,对横磁波和横电波都有效,且吸波频段随入射波的极化方式而改变.该结构的基本单元由八个梯度排列的子单元构成,每个子单元由两层金属-介质双层膜垂直层叠组成.全波仿真结果表明,在1.68—2μm波段,该结构对横磁波吸收超过90%,而对横电波吸收很小(小于6%);在3.8-3.9μm波段,该结构对横电波吸收超过90%,而对横磁波吸收很小(小于5%).另外,该结构具有宽角度吸收特性,当入射角增大到60°时仍然能够保持较高的吸收率和较宽的吸收频带. 相似文献
9.
离子束辅助淀积低温微光学元件红外宽带增透膜 总被引:1,自引:0,他引:1
简要叙述了锗基片微光学元件红外宽带减反膜的设计与制作。着重介绍了离子束辅助淀积制备该膜系的过程,给出了用该方法制作8~12μm波段的减反膜的测试曲线,它具有峰值透过率高,在设计波长范围内的平均透过率大于97%以上,膜层附着好,可以切割和擦洗,可以在室温和100K低温下反复循环使用。 相似文献
10.
霍尔离子源辅助制备长波红外碳化锗增透膜 总被引:1,自引:0,他引:1
为了提高锗基底的透过率和环境适应性,镀制了增透保护膜。应用电子枪蒸发加霍尔离子源辅助的方法沉积了碳化锗(Ge1-xCx)薄膜。通过固定霍尔离子源参数,控制沉积速率的工艺得到了不同光学常数的碳化锗薄膜。X射线衍射(XRD)测试表明,所制备的碳化锗薄膜在不同的沉积速率下均为无定形结构。采用傅立叶变换红外(FTIR)光谱仪测量了试片的透过率,使用包络法获得了相应工艺条件下的光学常数。在锗基底上双面镀制碳化锗增透膜后,长波红外7.5~11.5 μm波段的平均透过率Tave>85%。经过环境实验之后的碳化锗膜层完好,证明碳化锗增透膜具有良好的环境适应性。 相似文献
11.
分析了倾斜入射条件下导致光学薄膜产生偏振的原因,针对不同偏振态的等效导纳与等效相位进行了分析,并计算了对称膜层在45°入射条件下不同偏振态的等效折射率与等效相位厚度,采用等效层方法设计了光学性能良好的600~900 nm波段消偏振宽带减反膜。最后利用电子束蒸发技术制备了薄膜样品,样品的光谱性能完全能够满足使用要求。其中在600~900 nm波段范围内,平均反射率均小于1.38%,反射率的偏振度均低于0.89%。另外,通过对其理论及实验光学性能、角度敏感性、膜层厚度误差敏感性等方面的分析结果可知,对称膜层组合法是设计消除倾斜入射下宽带减反膜偏振效应的一种行之有效的方法。 相似文献
12.
采用矢量法设计了三硼酸锂(LiB3O5,LBO)晶体上1 064 nm、532 nm、355 nm和266 nm四倍频增透膜.结果表明,在1 064 nm、532 nm、355 nm和266 nm波长的剩余反射率分别为0.001 9%、0.003 1%、0.006 1%和0.004 7%.根据容差分析,薄膜制备时沉积速率准确度控制在+6.5%时,基频、二倍频、三倍频和四倍频波长的剩余反射率分别增加至0.24%、0.92%、2.38%和4.37%.当薄膜材料折射率的变化控制在+3%时,1 064 nm波长的剩余反射率增大为0.18%,532 nm、355 nm和266 nm波长分别达0.61%,0.59%,0.20%.与薄膜物理厚度相比,膜层折射率对剩余反射率的影响大.对膜系敏感层的分析表明,在1 064 nm和266 nm波长,从入射介质向基底过渡的第二层膜厚度变化对剩余反射率的影响最大,其次是第一膜层.在532 nm和355 nm波长,从入射介质向基底过渡的第一和第四膜层是该膜系的敏感层.误差分析也表明,薄膜材料的色散对特定波长的剩余反射率具有明显影响,即1 064 nm、532 nm、355 nm和266 nm波长的剩余反射率分别增加至0.30%、0.23%、0.58%和3.13%. 相似文献
13.
14.
三硼酸锂晶体上1064 nm,532 nm,355 nm三倍频增透膜的设计 总被引:1,自引:0,他引:1
采用矢量法设计了三硼酸锂晶体上1064 nm、532 nm和355 nm三倍频增透膜,结果表明1064 nm、532 nm和355 nm波长的剩余反射率分别为0.0017%、0.0002%和0.0013%。根据误差分析,薄膜制备时沉积速率精度控制在 5.5%时,1064 nm、532 nm和355 nm波长的剩余反射率分别增加至0.20%、0.84%和1.89%。当材料折射率的变化控制在 3%时,1064 nm处的剩余反射率增大为0.20%,532 nm和355 nm处分别达0.88%和0.24%。与薄膜物理厚度相比,膜层折射率对剩余反射率的影响大。对膜系敏感层的分析表明,在1064 nm和355 nm波长,从入射介质向基底过渡的第二层膜的厚度变化对剩余反射率的影响最大,其次是第一膜层。在532 nm波长,第一和第三膜层是该膜系的敏感层。同时发现,由于薄膜材料的色散,1064 nm5、32 nm和355 nm波长的剩余反射率分别增加至0.15%、0.31%和1.52%。 相似文献
15.
为满足卫星激光通信中超高速数据传输的特殊要求,采用电子束和离子辅助沉积技术,制备了532nm、632nm和1 064nm波长处高反射,808nm和1 550nm处高透射的多波段滤光膜.选取了H4和SiO2作为高低折射率材料,通过对膜系设计曲线的不断优化,减少了灵敏层的个数,得到了相对易于制备的膜系结构;采用电子束加热蒸发方法并加以离子辅助沉积系统制备薄膜,采用光控与晶控同时监控的方法控制膜厚;通过不断调整工艺,提高了薄膜的抗激光损伤能力,减小了膜厚控制误差,提高了透射波段的透过率及反射波段的反射率,最终得到了光谱性能较好的滤光膜.该薄膜能够承受雨淋、盐雾、高低温等环境测试,满足使用要求. 相似文献
16.
为满足卫星激光通信中超高速数据传输的特殊要求,采用电子束和离子辅助沉积技术,制备了532 nm、632 nm和1 064 nm波长处高反射,808 nm和1 550 nm处高透射的多波段滤光膜.选取了H4和SiO2作为高低折射率材料,通过对膜系设计曲线的不断优化,减少了灵敏层的个数,得到了相对易于制备的膜系结构;采用电子束加热蒸发方法并加以离子辅助沉积系统制备薄膜, 采用光控与晶控同时监控的方法控制膜厚;通过不断调整工艺,提高了薄膜的抗激光损伤能力,减小了膜厚控制误差,提高了透射波段的透过率及反射波段的反射率,最终得到了光谱性能较好的滤光膜.该薄膜能够承受雨淋、盐雾、高低温等环境测试,满足使用要求. 相似文献
17.
激光敌我识别系统中滤光膜的研制 总被引:7,自引:0,他引:7
根据激光敌我识别系统的使用要求,选择H4和SiO2作为高低折射率材料,借助Macleod和TFCalc软件进行膜系优化设计和分析。采用电子束真空镀膜的方法并加以离子辅助沉积技术,通过正交矩阵实验对材料的工艺参数进行调整和优化,利用基片的正反面分别对带通滤光片的长波反射带和短波反射带进行展宽,解决了单面膜层过厚难以控制的问题,制备了符合要求的激光滤光膜。镀膜后的基片在532,632,905,1064和1550nm波长处的透射率小于0.2%,808nm波长附近的平均透射率大于95%。并在532nm和1064nm波长处具有较高的激光损伤阈值,能承受恶劣的环境测试,满足激光敌我识别系统中光学仪器的使用要求。 相似文献
18.
为了提高Glan-Taylor棱镜的透射率,研究了Glan-Taylor棱镜在可见光波段及1064nm波长处减反射膜膜的设计和制备.为提高薄膜和冰洲石晶体的附着力,采用沉积Al2O3为过渡层,ZrO2作缓冲层的方法,用单纯形优化的方法进行膜系优化设计.用电子束沉积和离子柬辅助沉积的方法制备了多层减反射膜,并采用石英晶体振荡法监控膜厚和沉积速率.测量结果表明,在可见光波段及1064nm波长处的剩余反射率均小于0.5%经测试薄膜与冰洲石晶体的附着力性能良好. 相似文献