首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bi0.815Y0.085La0.10FeO3 perovskite is studied by 57Fe Mössbauer spectroscopy at 87, 295, and 670 K. The measured temperature of the magnetic phase transition (the Néel temperature) is T N = 666 ± 5 K. It is found that substituting Y3+ ions for 0.085 at % Bi3+ in the Bi0.9La0.1FeO3 perovskite destroys the spatially spin-modulated structure while the rhombohedral crystal structure is retained. Two structurally nonequivalent states of iron ions are found above the Neel temperature. Below the Neel temperature, there are four magnetically nonequivalent states of trivalent iron ions.  相似文献   

2.
Mössbauer method was used to study a perovskite compound Bi0.9Ca0.1FeO3 at T = 295 K and at temperature above T N . It has been established that Bi0.9Ca0.1FeO3 has a rhombohedral crystal structure similar to that of BiFeO3. The substitution of Ca2+ for Bi3+ ions leads to the formation of three states of Fe3+ ions with an octahedral surroundings and one state with a tetrahedral oxygen surroundings with substantially different hyperfine magnetic fields. All Fe ions are in a trivalent state; the compensation of the charge deficit occurs via the formation of oxygen vacancies. Above T N , two structurally nonequivalent states of Fe3+ ions exist in the Bi0.9Ca0.1FeO3 sample, which correspond to the Fe3+ ions with an octahedral and tetrahedral oxygen coordination.  相似文献   

3.
Perovskites of the Bi0.8La0.2Fe1 ? x Cr x O3 system (x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298–800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.  相似文献   

4.
Perovskites of the Bi1 ? x Sr x FeO3 system (x = 0–0.67) at T = 295 K and T > T N are studied using the Mössbauer effect. When the strontium content x = 0.1–0.15, the structural transition from the rhombohedral to the cubic phase takes place. It is found that in samples of the Bi1 ? x Sr x FeO3 system (x = 0.07–0.67), there are only two structurally nonequivalent states of iron ions that correspond to Fe3+ ions in octahedral and tetrahedral oxygen environments.  相似文献   

5.
J. Li 《Hyperfine Interactions》1992,69(1-4):573-576
Compounds La1?x Ca x FeO3?y (0≤x≤0.50) were prepared and characterized by X-ray diffraction and Mössbauer measurements. The diffraction patterns were defined to be orthorhombic. The lattice constants of orthorhombic perovskite La1?x Ca x FeO3?y decrease linearly with increasingx. The Mössbauer spectra at room temperature indicate that the Néel temperature drops and the isomer shift decreases with increasingx. The spectrum of La0.50 Ca0.50 FeO3?y at 80 K shows two hyperfine splitting patterns which may be related to the Fe3+ and Fe5+ ions.  相似文献   

6.
Charge disproportionation in La0.5Ca0.5FeO3−δ perovskite has been detected by zero-field Mössbauer spectra from 20 K to room temperature. On the basis of the parameters of center shifts and hyperfine fields, Mössbauer spectra identified that the iron ionic states are Fe3+ and Fe5+ below 150 K, Fe3+, Fe4+ and Fe5+ in the intermediate temperature region, as well as Fe3+ and Fe4+ above 220 K. At low temperatures, the system exhibits a cluster-glass-like state resulting from competition between antiferromagnetic interaction of Fe3+–Fe3+ and ferromagnetic interaction of Fe3+–Fe5+.  相似文献   

7.
The crystal and magnetic structures of KFeO2 have been determined by neutron and X-ray powder-diffraction and Mössbauer-effect techniques. The crystal structure at 4.2 K and 300 K is orthorhombic and the magnetic space group is Pbca'. The Fe3+-ions in this structure are tetrahedrally coordinated by oxygen ions, and each Fe3+-ion has a magnetic moment which is antiferromagnetically coupled to the moments of four Fe3+-neighbours. The direction of the moments is parallel to the a-axis. A crystal phase transition has been observed near the Néel temperature?960 K.  相似文献   

8.
57Fe Mössbauer absorption spectra under ultra-high pressure up to 53 GPa have been measured using a diamond anvil cell for SrFeO2.97 which is one of the typical Fe4+ oxides having a cubic perovskite structure. External high pressure up to 53 GPa makes no indication of structural transformation and does not show any change in valence state of iron, however the Néel temperature of 131 K at 0 GP increases to 300 K and the57Fe magnetic hyperfine field decreases from 32.9 T at 0 GPa and 6.5 K to 23.3 T at 53 GPa and 300 K.  相似文献   

9.
Powder samples of Sr0.5Ca0.5Fe0.5Me0.5O3 (Me = Co, Zr or Mn) and Sr0.3La0.7FeO3 are investigated by X-ray diffraction and Mössbauer effect spectroscopy. Analysis of the completely ordered spectra suggested three kinds of iron ions coexist in general where the resolution into the different valence state is clearly seen. The Mössbauer effect parameters values are found to be close to those expected for Fe3+, Fe4+ and Fe5+ indicating that some of the tetravalent iron ions in its high spin state disproportionate into Fe3+ and Fe5+ ions passing through temperature dependent intermediate valence states.  相似文献   

10.
The specific heat was measured in the range 0.4–300 K in YFe3(BO3)4, Y0.5Gd0.5Fe3(BO3)4, and GdFe3(BO3)4 single crystals. Sharp anomalies were found at temperatures of first-order structural, second-order antiferromagnetic, and first-order spin-reorientational transitions. A Néel temperature of about 37 K was found to be virtually independent of presence of rare-earth ions, indicating rather weak coupling of Gd and Fe subsystems. The contribution of the magnetic system to specific heat was separated through the scaling procedure allowing determination of the magnetic entropy of Fe and Gd subsystems. At the lowest temperatures, the specific heat in GdFe3(BO3)4 exhibits a Schottky-type anomaly, which is due to Gd3+ eightfold degenerate ground-level splitting by the internal magnetic field of the Fe subsystem of about 7 T. The text was submitted by the authors in English.  相似文献   

11.
Single-phase rhombohedral perovskites (Bi0.9Sr0.1)FeO3 were studied by Mössbauer spectroscopy at temperatures of 293, 87, and 680 K. The Neel temperature T N = 652 ± 2 K of the magnetic transition was measured. Three states of trivalent iron ions in the octahedral states were discovered. Substitution of Sr2+ for 0.1 mol % Bi3+ breaks the spatially spin-modulated structure.  相似文献   

12.
Static magnetization measurements on the ferrimagnetic spinels Fe2(1?y)Mg1+y Ti y O4 withy=0.3, 0.4, 0.5, and 0.6 show that these compounds have no well-defined orderdisorder transition temperature and that their ferrimagnetism may not be described in terms of the Néel theory. From the Mössbauer spectra we conclude that a temperature dependent number of the ferric ions does not participate in the ferrimagnetism of those compounds with compositiony≧0.4. The explanation of the observed magnetic and Mössbauer properties is based on the assumption that each ferric ion must have at least two magnetic linkages of the type Fe A 3+ ?O2??Fe B 3+ in order to couple its magnetic moment to the neighbouring ones over the entire temperature interval between 0 K and the respective Néel temperature.  相似文献   

13.
We observed an exchange bias effect in La0.5Ca0.5FeO3 perovskite compound.The exchange bias is associated with the charge disproportionation transition from Fe4+ions to Fe3+and Fe5+ions below 175 K.The competition between the ferromagnetic interaction of Fe3+and Fe5+ions and the antiferromagnetic one of Fe3+and Fe3+ions results in a unidirectional anisotropy in the cluster-glass system.An antiferromagnetically interfacial exchange coupling constant Ji1.95 meV at the cluster-glass region was yielded by fitting the cooling field-dependence of the exchange bias field.  相似文献   

14.
The structural and magnetic properties of the alloy system REIn0.5Ag0.5 [RE = Gd, Tb, Dy, Ho, Er, Tm and Yb] are reported. All these alloys (except that of Yb) crystallize in a cubic CsCl type structure at room temperature. Low temperature X-ray diffraction data does not reveal any structural phase transformation down to 8 K. On the basis of magnetic susceptibility data at a different temperature (3–300 K) and applied magnetic field (2 × 105 to 8 × 106 A m-1, it has been concluded that GdIn0.5Ag0.5 is ferromagnetic (Tc = 118 K), TbIn0.5Ag0.5 and DyIn0.5Ag0.5 are meta magnetic (TN = 66 and 30 K, respectively) and alloys involving Ho, Er, Tm and Yb are ferrimagnetic with Néel temperatures (TN) equal to 24, 22, 21 and 20 K, respectively. The evaluated effective magneton number (p) is found to be slightly larger compared to theoretical values for tripositive ions of Gd, Tb and Dy and a bit smaller for Ho, Er, Tm and Yb. The results have been qualitatively explained using appropriate theories.  相似文献   

15.
Hyperfine interactions on 57Fe nuclei in cubic perovskite Bi0.75Sr0.25FeO3 ? y in the temperature range 87–700 K are studied using Mössbauer spectroscopy. The temperature of the magnetic phase transition (the Neel point T N ) of bismuth ferrite is T N = 670(3) K. Below T N , the experimental spectra demonstrate a partially resolved magnetic hyperfine structure with broadened lines, which is well described by superposition of four sextets. The values of the hyperfine magnetic field B and the isomer shift δ at room temperature initiated that all iron ions are in the trivalent state. Here, three sextets with the equal isomer shifts (δ1 ≈ δ2 ≈ δ3 = 0.38 mm/s correspond to the iron ions in the octahedral oxygen environment; in the fourth sextet, the iron ions are in the square-pyramidal environment (δ3 = 0.25 mm/s).  相似文献   

16.
The parameters of hyperfine interactions in the Bi0.8La0.2FeO3 multiferroic have been measured by Mössbauer spectroscopy in the temperature range of 87–850 K. It has been found that the spatial spin-modulated structure that exists in BiFeO3 is destroyed in the substitution of La for 0.2 mol % of Bi and the homogeneous antiferromagnetic structure appears. The temperatures of the magnetic (Néel temperature, T N = 677 ± 3 K) and ferroelectric (Curie temperature, T C = 773 ± 3 K) transitions and the Debye temperature (Θ = 431 ± 12) have been measured.  相似文献   

17.
Abstract

In this work, La0.75Ca0.25FeO3?δ perovskite sample was prepared by the coprecipitation method. The nanoparticle was found to crystallize in the orthorhombic (Pbnm) phase as confirmed by X-ray diffraction (XRD) and transmission electron microscopic (TEM). The oxygen non-stoichiometry (δ) and magnetic states of iron ions (three magnetic sextets and non-magnetic doublet) were investigated by Mössbauer spectroscopy at room temperature (RT). The shape of the magnetic hysteresis loop of the sample reveals the existence of a weak ferromagnetism at RT. The magnetization vs. temperature curves, measured in the 9 to 200 K range, showed that the sample exhibits two magnetic-phase transition temperatures at 29 K (Tg) and 120 K (TCO). The magnetization isotherms, M (H), around these magnetic-phase transition temperatures for the sample are analyzed.  相似文献   

18.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

19.
借助与示差扫描量热法、磁化率测量、电子自旋共振、铁电与介电性质测量及电子衍射系统地研究了Pb(Fe1/2Nb1/2)O3(PFN)的电、磁性质和相变特征.结果表明发生在380K附近的顺电-铁电转变和发生在145K附近的顺磁 反铁磁转变分别为一级相变和二级相变或弱一级相变.在室温下,PFN的剩余极化与矫顽场分别为11.5μC/cm2和3.04kV/cm.介电测量表明PFN的顺电-铁电相变为弥散型相变.其弥散指数为1.62.电子衍射表明Fe3+与Nb5+离子在B位置上是无序分布的,正是这种与无序分布相关联的成分涨落导致铁电相变的弥散性. 关键词:  相似文献   

20.
The Fe0.5TiSe2 compound with a monoclinic crystal structure has been prepared by intercalation of Fe atoms between Se-Ti-Se sandwiches in the layered structure of TiSe2. The crystal and magnetic structures, electrical resistivity, and magnetization of the Fe0.5TiSe2 compound have been investigated. According to the neutron diffraction data, the Fe0.5TiSe2 compound has a tilted antiferromagnetic structure at temperatures below the Néel temperature of 135 K, in which the magnetic moments of Fe atoms are antiferromagnetically ordered inside layers and located at an angle of approximately 74.4° with respect to the layer plane. The magnetic moment of Fe atoms is equal to (2.98 ± 0.05)μB. The antiferromagnetic ordering is accompanied by anisotropic spontaneous magnetostrictive distortions of the crystal lattice, which is associated with the spin-orbit interaction and the effect of the crystal field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号