首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pumping (the line width near the threshold is ?200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ? 1 ns of the system coherence. The photon bunching is absent at a pumping level substantially below the condensation threshold. The effect of bunching also decreases at pumping significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pumping remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.  相似文献   

2.
Quantum correlation dynamics between two identical and spatially separated atoms in free space is investigated by the use of concurrence C and quantum discord (QD). The behaviors of QD differs in many unexpected ways from the entanglement in this system. Firstly, it shows the situations which the concurrence and QD can behave very differently with a “sudden birth” phenomenon of the former but not of the latter, and QD is only oscillating decays with time and the interqubit distance. We also verify the cases which QD is always greater than the concurrence and the region where the concurrence is vanished but with nonzero values for QD. Meanwhile an unexpected situation which the concurrence is greater than QD under the initial state |eg〉 is analyzed. It is revealed that the quantum correlation based only on QD is expected to be more robust than entanglement which is not suitable for all the initial states under the decoherence environment. Then, by introducing the incoherent pumping, we also study the different properties of the steady-state entanglement and QD about this atomic subsystem. It is shown that the incoherent pumping can overcome the decay of the atoms and the influences about the interqubit distance r 12/λ on the steady-state correlation can make the decay of the concurrence obviously quicker than QD, the life of the steady-state QD is evidently larger than the steady-state entanglement.  相似文献   

3.
A model describing the decay of photoinduced oscillations of the optical reflection coefficient R of bismuth is constructed, taking the crystal lattice anharmonicity into account. The decay time of oscillations of R is calculated as a function of the energy density of a laser pulse. The results of calculations explain the experimental data on the anomalously strong decay of oscillations of the optical reflection coefficient of bismuth (the decay time decreases by more than an order of magnitude with an increase in the laser pulse energy density from 0 to 4 mJ/cm2).  相似文献   

4.
We study the decay of Rabi oscillations of magnetically coupled impurity ions diluted in the solid. Electrostatic interactions between the ions treated as charged defects shift their g-factors and result in valuable correlations of their Larmor frequencies if the ions are close enough. We find an increase in the decay time of Rabi oscillations in comparison with the case of uncharged defects. The magnitude of the effect depends on the ratio between the impurity and the total defect concentrations, as well as on the type of the electron paramagnetic resonance line broadening mechanism (by random electric fields, electric field gradients, etc.). We present results in the arbitrary order of multipole expansion with respect to valence electron coordinates of the paramagnetic ion. Corresponding corrections to the decay times of Rabi oscillations of Nd3+ ions in CaWO4 crystal are obtained.  相似文献   

5.
The present work investigates the effects of relevant parameters of InAs/GaAs quantum dot and photonic crystal slab-based microcavity on the QD–cavity coupling characteristics, in detail. We employ variational approach to find exciton state in QD and to find cavity modes we use the open source GME code. Calculations have performed in linear regime where excitons behave as bosons which correspond to the limit of low excitation. The dynamics of the system are studied using the first order correlation function (G(1)(t,τ)). We will show how G(1) varies with time in both strong and weak coupling regimes. Our results indicate that the achieving of strong coupling regime is affected by the size of the quantum dot and how to engineer the photonic crystal microcavity to maximize the ratio of quality factor and mode volume.  相似文献   

6.
It was shown in JETP Lett. 102, 508 (2015) that the intensity correlation function of the emission from a high-quality-factor semiconductor microcavity under resonant optical pumping exhibits an oscillatory behavior with an unexpectedly long oscillation period and a long decay time, which fall in the nanosecond range. A further investigation demonstrates that the origin of these oscillations is not related to the weak Rabi interaction between long-lived localized exciton states in the quantum well and the electromagnetic field of the microcavity mode. It proves that the semiconductor microcavity plays a secondary role in the observation of nonclassical light: it provides the spectral selection of the modes of the pump laser. We believe that intrinsic instabilities lead to the chaotic excitation of spiking in the laser modes under a constant operating current.  相似文献   

7.
Lu-Chun Du 《Physics letters. A》2008,372(34):5529-5533
The normalized correlation function C(s) of an optical bistable system driven by cross-correlated noises is investigated. Based on the numerical computation and simulation results, it is found that: (1) The intensity of multiplicative noise D and the intensity of additive noise Q play opposite roles on C(s), i.e., D enhances the rate of fluctuation decay of transmitted light intensity and Q slows down the rate of fluctuation decay of the transmitted light intensity; (2) The strength of correlations between the multiplicative and additive noises λ slows down the rate of decay of intensity fluctuation; (3) For the case of positive correlated noises (λ>0), the increasing cooperativity parameter C slows down the rate of decay of intensity fluctuation firstly and then enhances it; (4) For the case of negative correlated noises (λ<0), the increasing C almost does not affect the rate of decay of intensity fluctuation firstly and then enhances it.  相似文献   

8.
Strong correlations in the fluctuations of the intensity of emission from a semiconductor microcavity under resonant laser excitation are observed. The intensity correlation function exhibits an unusual oscillatory behavior with an unexpectedly long oscillation period and decay time. The visibility of the correlation function reaches 0.81. Long oscillation times are attributed to the Rabi frequency characterizing weak coupling between the electromagnetic field of the semiconductor microcavity mode and long-lived exciton states localized by the random potential of the quantum well. For a laser excitation power density of 400 W/cm2, the power density of the radiation emitted by the microcavity is 12 W/cm2, which corresponds to the total flux of nonclassical light of 1.5 × 1015 photons/s from an excited spot 50 μm in diameter. Thus, a microcavity can serve as a bright emitter of nonclassical light.  相似文献   

9.
10.
Using general methods developed in a previous treatment we study correlations in inhomogeneous Ising models on a square lattice. The nearest neighbour couplings can vary both in strength and sign such that the coupling distribution is translationally invariant in diagonal direction. We calculate correlations parallel to the layering in the diagonally layered model with periodv=2, the so-called “general square lattice” model (GS). If the model has a finite critical temperature,T c>0, we have a spontaneous magnetization belowT c vanishing atT c with the Ising exponent β=1/8. AtT c correlations decay algebraically with critical exponnet η=1/4 and exponentially forT>T c. In the frustrated case we have oscillatory behaviour superposed on the exponential decay where the wavevector of the oscillations changes at some “disorder temperature”T D(>T c) from commensurate to temperature-dependent in commensurate periods. If the critical temperature vanishes,T c=0 we always have exponential decay at finite temperatures, while atT=T c=0 we encounter either long-range order or algebraic decay with critical index η=1/2, i.e.T=0 is thus a critical point.  相似文献   

11.
The ground-state properties of the S = 1 Haldane- Shastry model are studied using a modified Lanczos algorithm and diagonalizing exactly small chains. We find evidence that, as for the antiferromagnetic Heisenberg model, the spectrum shows a gap, in contrast to the {ie1-1} case. The correlation functions < S z(0)S z(m) > decay exponentially for large m. We find that the correlation functions for the Haldane-Shastry model decay faster than for the Heisenberg model. We estimate the infinite system limit for the groundstate energy, value of the gap and correlation functions.  相似文献   

12.
We have applied conventional Time Differential Perturbed Angular Correlation (TDPAC) method to observe the anisotropy oscillations in the 3γ annihilation decay of polarized Positronium in a weak magnetic field. The effect, as predicted theoretically and experimentally demonstrated by Barishevsky et al. [V.G. Barishevsky, O.N. Metelitsa, V.V. Tikhomirov, Oscillations of the positronium decay γ-quantum angular distribution in a magnetic field, J. Phys. B: At. Mol. Opt. Phys.22 (1989) 2835], is induced by the coherent admixture of the m = 0 states of ortho-Positronium (o-Ps) and para-Positronium (p-Ps) in interaction with the magnetic field.The following experimental characteristics are to be considered:
(i)
the oscillation frequency corresponds to the difference in energy of the Ps atom levels in magnetic field and is proportional with H2;
(ii)
in a fixed geometry the modulation depth (oscillations amplitude) depends on the mean positron polarization;
(iii)
privileged angles of the polarization vector, magnetic field and detectors are required for optimizing the observed oscillations amplitude.
The normalized difference spectrum function (R(t)) obtained from time spectra measured in vacuum and in different gaseous atmospheres (Ar, H2, N2) have the oscillations amplitude constant and we conclude that the Ps atoms are not fully thermalized over a time interval of about 400 ns.The R(t) functions obtained for o-Ps annihilation decays, in dry air or Ar-O mixture, have the oscillations amplitude time dependent due, probably, to the paramagnetism of the Oxygen molecules.  相似文献   

13.
Intracenter luminescence (IL) of Mn2+ in Zn1?xMnxSe (x=0.07, 0.02) was studied under pulsed excitation by the neodymium laser second harmonic. At 4 K, the IL saturation originates from the nonlinearity of the system only at the instant of excitation, the IL decay kinetics after the exciting pulse termination depending only weakly on the pumping level. At 77 K, the decay kinetics in Zn0.93Mn0.07Se depends substantially on the pumping level, because the migration of intracenter excitation over the manganese ions initiates up-conversion, which is a slow nonlinear process. As shown by IL decay measurements in Zn0.98Mn0.02Se (x=0.02), excitation migration over the Mn2+ ions is insignificant even at a high temperature and under strong optical pumping.  相似文献   

14.
The optical pumping of Cs atoms with light of the D 1 line under magnetic resonance conditions is numerically calculated. This calculation is done to check the suggestion that an unexpectedly strong influence of the polarization of the pumping light on the resonance signals of transverse alignment, which we observed experimentally, is caused by the coupling between orientation and alignment by means of the magnetic field and/or the pumping light. This suggestion has been confirmed: upon circularly polarized pumping, the shape of the signal line of transverse alignment proved to be similar, as well as in the experiment, to the shape of the signal line of transverse orientation and was sharply different from the shape of the line of alignment observed upon linearly polarized pumping. For metastable 23 S 1 4He atoms, in accordance with the experimental data, the calculated shape of the signal line of transverse alignment is found to be independent of the polarization of the pumping light. The calculations also confirm the possibility of a reverse effect: the influence of alignment on orientation, which manifests itself in the occurrence of orientation upon pumping with unpolarized light under magnetic resonance conditions. For Cs atoms exposed to a field of ~0.6 Oe, the largest contribution to this effect is yielded by the field coupling of orientation and alignment, whereas, for metastable 23 S 1 4He atoms, the largest contribution is made by the light coupling of these polarization moments.  相似文献   

15.
We investigate the long distance asymptotics of various correlation functions for the one-dimensional spin-1/2 Fermi gas with attractive interactions using the dressed charge formalism. In the spin polarized phase, these correlation functions exhibit spatial oscillations with a power-law decay whereby their critical exponents are found through conformal field theory. We show that spatial oscillations of the leading terms in the pair correlation function and the spin correlation function solely depend on ΔkF and 2ΔkF, respectively. Here ΔkF=π(nn) denotes the mismatch between the Fermi surfaces of spin-up and spin-down fermions. Such spatial modulations are characteristics of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. Our key observation is that backscattering among the Fermi points of bound pairs and unpaired fermions results in a one-dimensional analog of the FFLO state and displays a microscopic origin of the FFLO nature. Furthermore, we show that the pair correlation function in momentum space has a peak at the point of mismatch between both Fermi surfaces kkF, which has recently been observed in numerous numerical studies.  相似文献   

16.
The influence of two body short range correlations on elastic electron scattering charge form factors, charge densities as well as root mean square charge radii of some fp-shell nuclei (for example, 48Ca, 50Cr, 54Fe, 58Ni, 70Ge and 74Se) and some N50-shell nuclei (for example, 88Sr and 90Zr) is analyzed using the one- and two-body terms in the cluster expansion together with the single particle harmonic oscillator wave functions. The Jastrow-type correlation function is utilized to embed the effect of short range correlations into elastic charge form factors F(q) and charge densities ρ(r). Both F(q) and ρ(r) depend upon the harmonic oscillator parameter b and the correlation parameter β (which initiates from the Jastrow correlation function). Here, the parameters b and β are determined via the fitting to the measured charge form factors. The embedding of short range correlations imitates the measured charge form factors at the high momentum transfers (q ≥ 2 fm−1). It is noticed that the implanting of short range correlations is required for obtaining a remarkable alteration in the computed elastic charge form factors which in turn leads to explain the data of electron scattering astonishingly throughout the entire range of considered momentum transfers.  相似文献   

17.
18.
Excitation-energy sharing has been studied in the20Ne+54Fe reaction at 11 and 15 MeV/nucleon using projectile-like fragment-α correlations. Since the dominant part of the correlation can be described by sequential decay, primary excitation distributions were obtained. An unexpected strong asymmetry in the excitation-energy sharing is observed.  相似文献   

19.
It is shown that the renormalized finite temperature effective potential for continuumSU(2) Yang-Mills theory develops a non-perturbative minimum for sufficiently strong coupling, i.e. below a critical temperature. The corresponding phase can be the candidate for the confining phase of the continuum theory and becomes energetically favoured basicly due to the decay of theA 0 condensate into three gluons.  相似文献   

20.
Frequency dependent conductivity σ(ω) is calculated for the t ? J model by applying the memory function technique in terms of the Hubbard operators. The relaxation rate due to electron scattering on spin and charge dynamical fluctuations is calculated and a generalized Drude law for σ(ω) is obtained. For a model with an incoherent spectrum for one-hole excitations we obtain a universal form for frequency dependence of relaxation rate and conductivity in terms of the scaling function γ(ω/kT). The relaxation rate for the t ? J model is quite different from that one for the conventional Hubbard model in the strong coupling limit where it vanishes due to an exact cancellation of the intraband scattering and virtual interband transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号