首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural-phase changes in p-type single-crystalline silicon treated with compression plasma flows (CPFs) with an energy density of 5–12 J/cm2 are investigated by the X-ray diffraction method depending on the crystallographic orientation of the silicon and the plasma energy density. In addition, the conductivity type on the treated silicon surface is determined by means of measuring the sign of the thermopower.; the surface morphology, by scanning electron microscopy; and the open-circuit voltage, upon illumination of the treated silicon surface (AM1.5 spectrum). It is found that treatment with CPFs results in the occurrence of the photovoltaic effect conditioned by the formation of an n-type modified surface layer. Depending on the crystallographic orientation, the modified layer either remains single crystalline (for the initial orientation (111)) or is subjected to amorphization (for the initial orientation (100)). At an energy density of ~8–9 J/cm2 the action of CPFs leads to texture formation on the silicon surface.  相似文献   

2.
The orientation of the liquid crystal E7 on the surface of silicon wafers and inside the grooves of grooved silicon prepared by anisotropic etching in an alkali is investigated. The orientation of the liquid crystal is determined using IR absorbance and IR reflectance spectroscopy and the capacitance method. The specific features of IR absorption in the liquid crystal introduced into periodic matrices are analyzed. It is shown that the liquid crystal E7 in grooved silicon is characterized by a weakly pronounced planar orientation of the molecules with respect to the silicon walls.  相似文献   

3.
XPS Si2p spectra of microcrystalline silicon (μc-Si), prepared by plasma chemical transport are reported and the initial stages of oxidation are studied: In comparison with single crystal Si(111) surfaces, μc-Si samples are remarkable resistant to surface oxidation. A short exposure to air results in negligible oxygen adsorption (intensity ratio of 01s to Si2p peaks is less than 0.018 after more than3 × 1011 Langmuirs exposure to air). Intensive oxidation treatment is required to produce an oxide layer and evidence supporting a preferential grain boundary oxidation mechanism is presented. The surface plasmon structure observed in the Si2p spectrum provides complementary information on the remarkably low oxidation rate of the crystallite surfaces as compared to the grain boundaries.  相似文献   

4.
The g-factor of conduction electrons in the surface inversion layer on a silicon (100) surface has been determined using the tilted magnetic field method developed by Fang and Stiles.The value of (m1/m0g at the fixed magnetic field was independent of surface carrier density ns, whereas it had a sharp peak at about 97 koe. At strong magnetic field limit the value was constant and 0.4. If we take the effective mass of conduction electrons in the inversion layer on the (100) surface as 0.2m0, the g-factor is about two which is the same as that for conduction electrons in bulk silicon.  相似文献   

5.
The effect of surface states of silicon nanocrystals embedded in silicon dioxide on the photoluminescent properties of the nanocrystals is reported. We have investigated the time-resolved and stationary photoluminescence of silicon nanocrystals in the matrix of silicon dioxide in the visible and infrared spectral ranges at 77 and 300 K. The structures containing silicon nanocrystals were prepared by the high-temperature annealing of multilayer SiO x /SiO2 films. The understanding of the experimental results on photoluminescence is underlain by a model of autolocalized states arising on surface Si-Si dimers. The emission of autocatalized excitons is found for the first time, and the energy level of the autolocalized states is determined. The effect of these states on the mechanism of the excitation and the photoluminescence properties of nanocrystals is discussed for a wide range of their dimensions. It is reliably shown that the cause of the known blue boundary of photoluminescence of silicon nanocrystals in the silicon dioxide matrix is the capture of free excitons on autolocalized surface states.  相似文献   

6.
Experimental results on the high-frequency capacitance-voltage characteristic of a photoelectric solar energy converter based on the n +-p junction with a thin porous silicon film on the frontal surface are considered. It is shown that the capacitance-voltage characteristic is determined by the surface metal-insulator-semiconductor (MIS) structure formed as a result of growing of a porous silicon layer by electrochemical anode etching. The effective thickness of the insulator layer of the MIS structure, the impurity concentration in its semiconductor region, and the density of surface states are determined.  相似文献   

7.
The correlation of structural and electrical properties of clean silicon surfaces cleaved in UHV was investigated quantitatively by the surface photovoltage, using light with an energy larger than the band gap of silicon. The surface photovoltage, which is a function of band bending and recombination probability, depends strongly on the appearance of atomic steps. The additional surface states vary with density and crystallographic orientation of the steps as well as with adsorption of oxygen. The experimental facts can be explained by accepting a shift of the Fermi level at the surface towards the valence band due to edge atoms. By measuring the change of sign of the surface photovoltage of crystals with various dopings an exponential temperature dependence of the ratio of the recombination probabilities rv/rc for transitions from and into the Surface states has been derived.  相似文献   

8.
The black silicon has been produced by plasma immersion ion implantation (PIII) process. The microstructure and optical reflectance are characterized by field emission scanning electron microscope and spectrophotometer. Results show that the black silicon appears porous or needle-like microstructure with the average reflectance of 4.87% and 2.12%, respectively. The surface state is investigated by X-ray photoelectron spectroscopy (XPS) technique. The surface of the black silicon is composed of silicon, carbon, oxygen and fluorine element. The formation of SixOyFz in the surface of black silicon can be proved clearly by the O 1s, F 1s and Si 2p XPS spectra. The formation mechanism of the black silicon produced by PIII process can be obtained from XPS results. The porous or needle-like structure of the black silicon will be formed under the competition of SFx+ (x  5) and F+ ions etching effect, SixOyFz passivation and ion bombardment.  相似文献   

9.
Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C-V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.  相似文献   

10.
For hydrogenated amorphous silicon (a-Si:H) film growth governed by SiH3 plasma radicals, the surface reaction probability β of SiH3 and the silicon hydride (-SiHx) composition of the a-Si:H surface have been investigated by time-resolved cavity ringdown and attenuated total reflection infrared spectroscopy, respectively. The surface hydride composition is found to change with substrate temperature from -SiH3-rich at low temperatures to SiH-rich at higher temperatures. The surface reaction probability β, ranging from 0.20 to over 0.40 and with a mean value of β=0.30±0.03, does not show any indication of temperature dependence and is therefore not affected by the change in surface hydride composition. It is discussed that these observations can be explained by a-Si:H film growth that is governed by H abstraction from the surface by SiH3 in an Eley-Rideal mechanism followed by the adsorption of SiH3 at the dangling bond created.  相似文献   

11.
This paper reports on a study of the depth profile of components in GeSi heterostructures grown on low-temperature silicon (LTSi: T gr ~ 350–400° C) and porous silicon by molecular-beam epitaxy. An excess Ge concentration was found by Auger electron spectroscopy depth profiling at the GexSi1?x /LTSi interface, which decreased in all samples subjected to annealing. The Ge diffusion activation energy was calculated to be E a ≈ 1.6 eV in this case. An enhanced Ge concentration was also detected by x-ray photoelectron spectroscopy at the Si cap surface. Possible reasons for the surface enrichment of the silicon layer and of the GexSi1?x film interface by germanium are considered, and the relation between the component distribution and the structural features of plastically strain-relieved layers are discussed.  相似文献   

12.
Using wet chemical reaction between N-vinylcarbazole and hydrogen-terminated silicon surface, we present a new and simple route to directly bond π-conjugated organic molecule on silicon surface. The Si can be in the form of single crystal Si including heavily doped p-type Si, intrinsic Si, heavily doped n-type Si, on Si(1 1 1) and Si(1 0 0), and on n-type polycrystalline Si. The covalent bond between 9-vinylcarbazole and silicon surface was confirmed by reflectance FTIR, XPS and contact angle measurement, respectively. A data-encompassing explanation for the mechanism discusses the possible route of the reaction. This simple and low-costly reaction offers an attractive route to attach functional conjugated molecules onto the semiconductor surface which aims to create some unique molecular device in the future.  相似文献   

13.
The method of ultrahigh-vacuum low-temperature (T = 850°C) purification of silicon single crystals having the (100) and (111) orientation and implanted with low-energy (E = 40 keV) iron ions with various doses (Φ = 1015?1.8×1017 cm?2) and subjected to pulsed ion treatment (PIT) in a silicon atom flow has been tested successfully. The formation of semiconducting iron disilicide (β-FeSi2) near the surface after PIT is confirmed for a Si(100) sample implanted with the highest dose of iron ions. The possibility of obtaining atomically smooth and reconstructed silicon surfaces is demonstrated. Smooth epitaxial silicon films with a roughness on the order of 1 nm and a thickness of up to 1.7 μm are grown on samples with an implantation dose of up to 1016 cm?2. Optical properties of the samples before and after the growth of silicon layers are studied; the results indicate high quality of the grown layers and the absence of iron disilicide on their surface.  相似文献   

14.
15.
DC-induced generation of the reflected second harmonic is experimentally observed on the surface of a centrosymmetric silicon single crystal. A direct current with a surface density of j max ~ 103 A/cm2 violates the symmetry of the electron distribution function and induces the optical second harmonic with an intensity corresponding to the dipole quadratic susceptibility χ(2)d (j max) ~ 3 × 10?15 m/V.  相似文献   

16.
We present a surface X-ray diffraction determination of the silicon (111)-liquid interface structure during alkaline etching. Preparation of an atomically smooth surface was realized by an in-situ procedure using an aqueous NH4F solution devoid of oxygen. Using diluted aqueous potassium hydroxide (KOH) and ammonium fluoride (NH4F) etchant, we have observed that the crystal surface is hydrogen terminated and is not reconstructed at open circuit potential. In addition, a partial liquid ordering of two water layers on top of the crystal surface was found, indicating a weak interaction with the hydrophobic, hydrogen terminated surface. We have followed in-situ the development of the oxide layer by a birth and spread mechanism during anodic passivation of the silicon surface.  相似文献   

17.
Formation of the Si/Co interface and its magnetic properties have been studied by high-resolution photoelectron spectroscopy with synchrotron radiation. The experiments have been performed in situ in superhigh vacuum (5 × 10?10 Torr) with coating thicknesses up to 2 nm. It has been found that, in the initial stage of silicon deposition on the surface of polycrystalline cobalt maintained at room temperature, ultrathin layers of the Co3Si, Co2Si, CoSi, and CoSi2 silicides are formed. The three last phases are nonmagnetic, and their formation gives rise to fast decay of magnetic linear dichroism in photoemission of Co 3p electrons. At deposition doses in excess of ~0.4 nm Si, a film of amorphous silicon grows on the sample surface. It has been established that the Si/Co interphase boundary is stable at temperatures up to ~250°C and that further heating of the sample brings about escape of amorphous silicon from the sample surface and initiates processes involving silicide formation.  相似文献   

18.
The electron energy relaxation is investigated as a function of the “electron temperature” Te in the n-channel of a (100) surface silicon MOSFET device by inspecting the phenomenological energy relaxation time τε(Te). τε is determined theoretically and compared to experimental results in order to identify the energy relaxation mechanism(s) present at the interface. Two dimensional electron transport is assumed. Single activation temperature (θ) Rayleigh wave scattering and acoustic Rayleigh wave scattering are studied as possible energy loss processes. The effects of electric subbanding near the surface are included. τε is calculated for Te ? 15 K in the electric quantum limit. We find that a single θ = 12.0 K Rayleigh phonon fits theory to experiment for a single electron inversion density (Ninv) case, but can not provide a fit simultaneously for more than one Ninv value. Theory and experiment disagree when Rayleigh wave acoustic scattering is assumed.  相似文献   

19.
The changes in the electronic structure and phase composition of porous silicon under action of pulsed ionic beams have been studied by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) using synchrotron radiation. The Si 2p and O 1s core photoemission spectra for different photoelectron collection angles, valence band photoemission spectra, and X-ray absorption near-edge fine structure spectrain the region of Si L 2,3 edges of the initial and irradiated samples have been analyzed. It has been found that, as a result of the irradiation, a thin oxide film consisting predominantly of higher oxide SiO2 is formed on the porous silicon surface, which increases the energy gap of the silicon oxide. Such film exhibits passivation properties preventing the degradation of the composition and properties of porous silicon in contact with the environment.  相似文献   

20.
The interaction of C-atoms and CHn-radicals with uncleaned and argon cleaned silicon substrate and with diamond surface after H-treatment have been studied in situ by XPS and Auger spectroscopy. It was found the formation of a new chemical surface state of carbon atoms in the case of carbon atoms and radicals interaction with cleaned silicon. The same chemical state was revealed on the H-treated diamond surface. Graphite-like structure of carbon atoms was observed on the surface of unlearned silicon and H-treated diamond after interaction with carbon atoms and radicals. N(E) C KVV Auger spectrum for the new chemical state of carbon atoms significantly differs from typical spectra for sp2- and sp3-bonded carbon materials. The high energy part of this spectrum was interpreted under the hypothesis of sp3-bonded carbon atoms but with shifted fermi level position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号