首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of recent advances in the field of epitaxial growth of SiC films on Si by means of a new method of epitaxial substitution of film atoms for substrate atoms has been presented. The basic statements of the theory of the new method used for synthesizing SiC on Si have been considered and extensive experimental data have been reported. The elastic energy relaxation mechanism implemented during the growth of epitaxial SiC films on Si by means of the new method of substitution of atoms has been described. This method consists in substituting a part of carbon atoms for silicon matrix atoms with the formation of silicon carbide molecules. It has been found experimentally that the substitution for matrix atoms occurs gradually without destroying the crystalline structure of the matrix. The orientation of the film is determined by the “old” crystalline structure of the initial silicon matrix rather than by the silicon substrate surface only, as is the case where conventional methods are used for growing the films. The new growth method has been compared with the classical mechanisms of thin film growth. The structure and composition of the grown SiC layers have been described in detail. A new mechanism of first-order phase transformations in solids with a chemical reaction through an intermediate state promoting the formation of a new-phase nuclei has been discussed. The mechanism providing the occurrence of a wide class of heterogeneous chemical reactions between the gas phase and a solid has been elucidated using the example of the chemical interaction of the CO gas with the single-crystal Si matrix. It has been shown that this mechanism makes it possible to grow a new type of templates, i.e., substrates with buffer transition layers for growing wide-band-gap semiconductor films on silicon. A number of heteroepitaxial films of wide-band-gap semiconductors, such as SiC, AlN, GaN, and AlGaN on silicon, whose quality is sufficient for the fabrication of a wide class of micro- and optoelectronic devices, have been grown on the SiC/Si substrate grown by solid-phase epitaxy.  相似文献   

2.
Substructure and phase composition of silicon suboxide films containing silicon nanocrystals and implanted with carbon have been investigated by means of the X‐ray absorption near‐edge structure technique with the use of synchrotron radiation. It is shown that formation of silicon nanocrystals in the films' depth (more than 60 nm) and their following transformation into silicon carbide nanocrystals leads to abnormal behaviour of the X‐ray absorption spectra in the elementary silicon absorption‐edge energy region (100–104 eV) or in the silicon oxide absorption‐edge energy region (104–110 eV). This abnormal behaviour is connected to X‐ray elastic backscattering on silicon or silicon carbide nanocrystals located in the silicon oxide films depth.  相似文献   

3.
A symmetry analysis of the crystal structure and the phonon spectrum during continuous topochemical conversion of silicon into silicon carbide has been carried out. The transformation of the symmetry of phonons at high-symmetry points of the Brillouin zone upon the transition from the initial cubic structure of silicon (diamond) through an intermediate cubic structure of silicon carbide to the trigonal structure of SiC has been determined. The selection rules for the infrared and Raman spectra of all the three phases under investigation have been established.  相似文献   

4.
《Physics letters. A》2019,383(17):2076-2081
We have theoretically investigated the effect of applying longitudinal and transverse electric field on silicon carbide nanotubes with different orientations of Stone Wales defects. We found that each type of Stone Wales defects maintained different formation energy. We have also successfully proved that the orientation of Stone Wales defects in silicon carbide nanotubes response quite differently upon applying external electric field, whereas, two important and interesting phenomena were observed. First, the semiconductor-metal phase transition occurred in silicon carbide nanotubes as well as the three types of Stone Wales defects. However, clear band gap variations were observed in all silicon carbide nanotubes under study. Second, the band gap variations in pristine silicon carbide nanotubes and nanotubes with different orientations of Stone Wales defects have the same trend, even though all silicon carbide nanotubes have clear band gap values under different strengths of the applied external electric field. However, band gap tuning under longitudinal electric field is less significant compared to band gap tuning under the transverse electric field.  相似文献   

5.
Methods of linear algebra were used to find a basis of independent chemical reactions in the topochemical conversion of silicon into silicon carbide by the reaction with carbon monoxide. The pressure–flow phase diagram was calculated from this basis, describing the composition of the solid phase for a particular design of vacuum furnace. It was demonstrated that to grow pure silicon carbide, it is necessary to ensure the pressure of carbon monoxide less than a certain value and its flow more than a certain value, depending on the temperature of the process. The elastic fields around vacancies formed were considered for the first time in calculating the topochemical reaction. It was shown that the anisotropy of these fields in a cubic crystal increases the constant of the main reaction approximately fourfold.  相似文献   

6.
Two methods for the formation of silicon carbide clusters are investigated during the fluctuation stage of the first-kind phase transition with the help of computational experiments: (i) vapor condensation during the furnace-induced and plasmochemical formation of silicon carbide and (ii) crystallization of melt islands on the substrate surface via chemical deposition from the gas phase.  相似文献   

7.
A new method of solid-state epitaxy of silicon carbide (SiC) on silicon (Si) is proposed theoretically and realized experimentally. Films of various polytypes of SiC on Si(111) grow through a chemical reaction (at T = 1100–1400°C) between single-crystal silicon and gaseous carbon oxide CO (at p = 10–300 Pa). Some silicon atoms transform into gaseous silicon oxide SiO and escape from the system, which brings about the formation of vacancies and pores in the silicon near the interface between the silicon and the silicon carbide. These pores provide significant relaxation of the elastic stresses caused by the lattice misfit between Si and SiC. X-ray diffraction, electron diffraction, and electron microscopy studies and luminescence analysis showed that the silicon carbide layers are epitaxial, homogeneous over the thickness, and can contain various polytypes and a mixture of them, depending on the growth conditions. The typical pore size is 1 to 5 μm at film thicknesses of ~20 to 100 nm. Thermodynamic nucleation theory is generalized to the case where a chemical reaction occurs. Kinetic and thermodynamic theories of this growth mechanism are constructed, and the time dependences of the number of new-phase nuclei, the concentrations of chemical components, and the film thickness are calculated. A model is proposed for relaxation of elastic stresses in a film favored by vacancies and pores in the substrate.  相似文献   

8.
The gas-phase decomposition mechanism of the photochemical and thermal reaction of cyclopropenone leading to carbon monoxide and acetylene has been investigated theoretically. We employed the B3LYP, MP2, and CASSCF methods with the 6-311?+?G** basis set to determine the pathways and the potential energy surface (PES) of this reaction. PES minima were characterized by the absence of any imaginary frequencies and compared with the transition states that contained single imaginary frequencies. The intrinsic reaction coordinate (IRC) method was used to find the minimum energy paths in which reactants and products were connected to the transition states. Activation barrier, thermodynamic, and IRC analyses were performed using the above three methods. Our computations indicated that the decomposition of cyclopropenone proceeds through a stepwise mechanism containing two transition states (TS1 and TS2) and an intermediate. The results show that TS1, the critical transition state, determines the rate of the cyclopropenone decomposition reaction. Therefore, we employed natural bond order (NBO) calculations to probe the structure of the intermediate. The calculations showed that the intermediate has resonance structures containing a carbene and a zwitterion. Our results are in good agreement with previous theoretical and experimental studies.  相似文献   

9.
The distribution functions of island nuclei of germanium melt drops on Si(100) substrate over lateral sizes and heights in the presence of a surface linear defect are obtained in a numerical experiment simulating the initial stage of the first-order phase transition. A similar model of heterogeneous condensation of silicon carbide vapor is discussed. Quasi-linear kinetic partial differential equations are solved by the efficient numerical method of stochastic analogue of nonequilibrium processes. The Volmer-Weber mechanism of cluster formation from melt islands, their crystallization, and island structure formation on the substrate are considered.  相似文献   

10.
The initial stages of the growth of ferroelectric barium strontium titanate films on single-crystal silicon carbide substrates have been studied for the first time. The choice of a substrate with high thermal conductivity has been due to the possibility of applying these structures in powerful microwave devices. The temperature ranges separating the mechanism of the surface diffusion of deposited atoms from the diffusion via a gaseous phase during the growth of multicomponent films have been determined. The studies show that the mass transfer by means of surface diffusion leads to the formation of small-height nuclei that cover a large area of the substrate, whereas the mass transfer via a gaseous phase leads to the formation of a “columnar” islandtype structure with small percentage of covering the substrate and larger island heights.  相似文献   

11.
连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸收特性等一系列优异性能,是各类核工程重要的潜在候选材料。在核聚变工程应用领域,连续碳纤维增强碳化硅材料作为第一壁材料不可避免地会受到各种辐射粒子的影响。研究清楚这些辐射粒子对它的辐照效应对其在核工程领域的安全使用至关重要。采用蒙特卡罗方法与分子动力学方法进行模拟计算,研究了氕、氘、氚和氦四种粒子对连续碳纤维增强碳化硅的辐照效应。SRIM和LAMMPS计算结果表明:当入射原子能量为100 eV,连续碳纤维增强碳化硅中碳的浓度在80%~85%时,氕、氘、氚和氦原子的溅射率存在最小值;入射粒子的种类对溅射率的影响显著,氦原子的溅射率大于氘原子和氚原子,而氘原子和氚原子的溅射率相差不大但均显著大于氕原子;溅射率随入射能量的增加先迅速增加后逐渐减小,氕、氘、氚和氦原子入射能量分别在200,400,600和800 eV时存在溅射率最大值;当氦原子入射能量为100 eV时,溅射率随入射角度的增加而逐渐减少。这些结果对连续碳纤维增强碳化硅材料在核工程上的应用具有一定的参考意义。Continuous carbon fiber reinforced silicon carbide material has the low neutron activation, low decay heat performance and tritium permeability, which are inherent performance of silicon carbide materials. It also has other advantages such as low density, small linear expansion coefficient, specific strength and specific modulus, high temperature resistance, oxidation resistance, creep resistance, thermal shock, resistance to chemical corrosion, salt fog resistance, excellent electromagnetic wave absorption properties, etc. It is an important potential candidate material in various field of nuclear engineering. In the field of nuclear fusion engineering applications, continuous carbon fiber reinforced silicon carbide as the first wall material will inevitably be bombarded by a variety of radiation particles. The radiation effect is critical to its safe use in nuclear engineering. The Monte Carlo method and the molecular dynamics method were used to study the radiation effect of protium, deuterium, tritium and helium on continuous carbon fiber reinforced silicon carbide. The SRIM and LAMMPS simulation results show that when the incident energy is 100 eV and the concentration of carbon in the continuous carbon fiber reinforced silicon carbide is about 80% ~ 85%, the sputtering yield of protium, deuterium, tritium and helium atoms have the minimum values. The kind of incident particle has a significant effect on the sputtering yield. The sputtering yield of helium atoms is larger than that of tritium atoms and deuterium atoms. There is not much difference between the sputtering yield of deuterium atoms and tritium atoms, and both the sputtering yield of deuterium atoms and tritium atoms are larger than that of protium atoms. The sputtering yield initially increases rapidly with the increase of the incident energy and then decreases gradually. The incident energy of the protium, deuterium, tritium and helium atoms has the maximum value of the sputtering yield at 200, 400, 600 and 800 eV, respectively. When the incident energy of helium atoms is 100 eV, the sputtering yield decreases while the increase of the incident angle. These results can provide a certain reference for the application of continuous carbon fiber reinforced silicon carbide materials in nuclear engineering.  相似文献   

12.
13.
We have studied structural and phase transformations in tungsten-containing functional coatings of carbon steels obtained during the high-energy processes of implanting tungsten carbide micropowders by the method of complex pulse electromechanical processing and micropowders of tungsten by technology of directed energy of explosion based on the effect of superdeep penetration of solid particles (Usherenko effect). It has been shown that, during thermomechanical action, intensive steel austenization occurs in the deformation zone with the dissolution of tungsten carbide powder, the carbidization of tungsten powder, and the subsequent formation of composite gradient structures as a result of the decay of supercooled austenite supersaturated by tungsten according to the diffusion mechanism and the mechanism of spinodal decomposition. Separate zones of tungsten-containing phases of the alloy are in the liquid-phase state, as well as undergo spinodal decomposition with the formation of highly disperse carbide phases of globular morphology.  相似文献   

14.
We have performed an experimental analysis on the investigation of high energy ion beam irradiation on Si(1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The surface modifications induced by the ion beams are characterized using standard surface science diagnostic tools, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive X-ray (EDX) analysis and atomic force microscope (AFM) and the results are reported. In particular, it has been found that with silicon targets, the application of PF carbon ion beams results in the formation of a surface layer of hexagonal (6H) silicon carbide, with embedded self-organized step/terrace structures.  相似文献   

15.
The phase transformation from the pyrochlore phase into the perovskite phase in ferroelectric films of lead zirconate titanate on silicon substrates due to annealing of samples has been investigated experimentally and theoretically. It has been proved that this transformation is a typical first-order phase transition, which is accompanied by a change in the density of the phases and the release of the latent heat of the phase transition. The quantitative evaluations have demonstrated that the difference in the densities of two phases, namely, the perovskite phase and the original parent pyrochlore phase, leads to the generation of elastic stresses in the original parent phase. In turn, these stresses bring about the nucleation of micropores in the bulk of the lead zirconate titanate film. The thermodynamic conditions providing the formation of micropores have been established and the critical size of the micropores has been calculated. A characteristic relationship between the critical size of nuclei of the perovskite phase and the radius of micropores at which the perovskite phase is separated from the parent pyrochlore phase has been derived. This relationship has been verified experimentally. The sizes of the micropores have been determined using scanning electron microscopy, and the changes in the phase composition during the phase transformation have been found using an electron probe X-ray microanalysis. It has been demonstrated theoretically and experimentally that the relaxation of elastic stresses in the lead zirconate titanate thin films during the phase transition occurs through the nucleation and growth of micropores at the interface between the new and parent phases.  相似文献   

16.
采用密度泛函理论(DFT)中的UB3LYP方法在6-311 G(2d,2p)水平上研究了五重态和三重态的Fe与单重态CH2反应的机理,在UB3LYP结构优化的基础上用耦合簇理论方法UCCSD(T)在相同水平下对各驻点进行了单点能校正.结果表明,该反应在三重态和五重态上的势能面非常相似,都经过两个过渡态(TS1、TS2)和三个中间体(FeCH2、HFeCH、H2FeC),五重态和三重态势能面在形成中间体FeCH2前发生交叉,整个反应沿三重态路径进行,最后得到三重态的FeC和H2.该反应是一个四步反应,其中由HFeCH到H2FeC的反应步骤为整个反应的速率控制步骤,反应的活化能为176.3 kJ/mol.  相似文献   

17.
Raman spectroscopy was performed to investigate microscopic structural changes associated with a ripple structure formation initiated by femtosecond laser irradiation on the surface of single-crystal silicon carbide. The amorphous phases of silicon carbide, silicon, and carbon were observed. The intensity ratio between amorphous silicon carbide and silicon changed discretely at the boundary between fine and coarse ripples. The physical processes responsible for the formation of the ripple structure are discussed.  相似文献   

18.
The mechanism of cycloaddition reaction between singlet dichloromethylene silylene and formaldehyde has been investigated using a MP2/6-31G* method, including geometry optimization and vibrational analysis for the stationary points on the potential energy surface. The energies of different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the cycloaddition reaction between singlet dichloromethylene silylene and formaldehyde has three competitive dominant reaction channels: (1) the two reactants first form a highly strained three-membered ring intermediate INT1c, which then isomerizes to an active four-membered ring product P1 via a transition state TS1c by ring-increasing reaction; Subsequently, P1 further reacts with formaldehyde to form the more stable silapolycyclic product P2; (2) the two reactants first form a four-membered ring intermediate INT1b by the [2?+?2] cycloaddition reaction, which then isomerizes to the four-membered ring product P3.1 via a transition state TS3.1, resulting from the chlorine transfer reaction; (3) INT1b further reacts with formaldehyde to form a silapolycyclic intermediate INT4, which then isomerizes to a silapolycyclic product P4 via a transition state TS4.  相似文献   

19.
《Applied Surface Science》1986,25(4):380-390
The (100) surface of cubic silicon carbide has been studied by Auger electron spectroscopy as a function of in-situ annealing in ultra-high vacuum. The line-shape fine structures for both the silicon and carbon Auger transitions which were destroyed by ion bombardment were readily recovered by a brief heat treatment at about 600°C. Further heating above about 1000°C monotonically decreased the Si/C ratio with increasing temperature. Comparison of the changes in the silicon and carbon Auger peak heights with the intensity for the Ar peak from imbedded argon shows that this decrease in Si/C ratio was caused by silicon depletion rather than by carbon accumulation on the surface. A systematic study of the changes in the silicon and carbon Auger peak heights as a function of time and temperature showed that the depletion occured with an activation energy of about 120 kcal/mole (5.2 eV/atom). The carbon Auger line shape indicates that as the silicon was desorbed, the carbon bonding eventually changed from carbidic to graphitic.  相似文献   

20.
Annealing of silicon-carbon nanoparticles was performed in argon at atmospheric pressure to enable formation of silicon carbide nanomaterials and/or carbon structures. Three precursor powders with increasing crystallinity and annealing temperatures from 1,900 to 2,600 °C were used to gain information about the effect of precursor properties (e.g. amorphous vs. nanocrystalline, carbon content) and annealing temperature on the produced materials. Three structures were found after annealing, i.e. silicon carbide crystals, carbon sheets and spherical carbon particles. The produced SiC crystals consisted of several polytypes. Low annealing temperature and increasing crystallinity of the precursor promoted the formation of the 3C-SiC polytype. Raman analysis indicated the presence of single-layer, undoped graphene in the sheets. The spherical carbon particles consisted of curved carbon layers growing from the amorphous Si–C core and forming a ‘nanoflower’ with a diameter below 60 nm. To our knowledge, the formation of this kind of structures has not been reported previously. The core was visible in transmission electron microscopy analysis at the annealing temperature of 1,900 °C, decreased in size with increasing temperature and disappeared above an annealing temperature of 2,200 °C. With increasing crystallinity of the precursor material, fewer layers (~5 with the most crystalline precursor) were detected in the carbon nanoflowers. The method presented opens up the possibility to produce new carbon nanostructures whose properties can be controlled by changing the properties of the precursor material or by adjusting an annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号