首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronegativity of groups placed in a molecular environment is obtained using CCSD calculations of the electron affinity and ionization energy. A point charge model is used as an approximation of the molecular environment. The electronegativity values obtained in the presence of a point charge model are compared to the isolated group property to estimate the importance of the external potential on the group's electronegativity. The validity of the "group in molecule" electronegativities is verified by comparing EEM (electronegativity equalization method) charge transfer values to the explicitly calculated natural population analysis (NPA) ones, as well as by comparing the variation in electronegativity between the isolated functional group and the functional group in the presence of a modeled environment with the variation based on a perturbation expansion of the chemical potential.  相似文献   

2.
Based on the density functional theory and partitioning the molecular electron density ρ (r) into atomic electronic densities and bond electronic densities, the expressions of the total molecular energy and the “effective electronegativity” of an atom or a bond in a molecule are obtained. The atom-bond electronegativity equalization model is then proposed for the direct calculation of the total molecular energy and the charge distribution of large molecules. Practical calculations show that the atom-bond electronegativity equalization model can reproduce the correspondingab initio values of the total molecular energies and charge distributions for a series of large molecules with a very satisfactory accuracy.  相似文献   

3.
电负性均衡     
杨忠志 《化学进展》2012,24(6):1038-1049
电负性是分子中一个原子把电子拉向它自身的能力,是化学理论的基本概念之一。继Pauling建立第一个电负性标度后,提出了众多的电负性标度。只是在密度泛函理论的基础上,电负性概念和电负性均衡原理,才被精密地论证。近二十多年来,电负性理论的重要发展是:应用电负性均衡模型或方法,可以快速地计算分子体系的电荷分布,从而确定分子的其他性质,甚至包括分子的结构和反应性指标。通常的电负性均衡方法只把分子划分到原子区域,虽然简单直观,但其精度和应用范围受到限制。原子与键电负性均衡方法,把分子划分到包括原子区域、化学键区域和孤对电子区域,能够较快速精密地计算分子的电荷分布和其他性质,并被应用到构建新一代可极化或浮动电荷力场的探索中,有广阔的应用前景。  相似文献   

4.
5.
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the corresponding ab initio method.  相似文献   

6.
7.
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the correspondingab initio method.  相似文献   

8.
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the correspondingab initio method.  相似文献   

9.
利用Matlab软件编写程序, 将基于密度泛函理论和电负性均衡原理发展的原子-键电负性均衡方法σ-π模型(ABEEM σ-π)计算的电荷分布, 特别是键电荷和孤对电子的电荷分布, 用图形表现出来, 对分子的电荷分布给出直观形象的认识, 并以腺嘌呤、腺嘌呤脱氧核苷酸以及丙烯与氯化氢的马氏亲电加成反应为例, 进行应用说明.  相似文献   

10.
以密度泛函理论和电负性均衡原理为基础,应用修正的电负性均衡方法,并自编程序,用最小二乘法,拟合确定了H,C,O,N,F和Cl以及S等各种类型原子的价态电负性、价态硬度和能量的相关参数;从电负性均衡原理的观点,利用这些参数确定了一些青霉素基团的电负性和电荷分布,并进行了讨论.  相似文献   

11.
On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.  相似文献   

12.
The atom-bond electronegativity equalization method (ABEEM), based on the equalization of the “effective electronegativity” of an atom or a bond in a molecule, allows the direct calculation of the charge distribution and the molecular electronegativity of a large molecule. We now demonstrate how the another important quantity, the total molecular energy, can be computed directly and rapidly. It is shown that, based on the ABEEM, the corresponding ab initio values of the total molecular energy can be reproduced with very satisfactory accuracy. In addition, it has been found that in the expression of the energy functional E[ρ] of the ABEEM, the charge-dependent term C correlates quite well with the total molecular bonding energy.  相似文献   

13.
应用ABEEM模型计算铁(Ⅱ)配合物的电荷分布   总被引:1,自引:1,他引:0  
以密度泛函理论和电负性均衡原理为基础,在原子-键电负性均衡模型中,利用最小二乘法,并结合自编程序,拟合确定了氢、碳、氮、硫以及铁(Ⅱ)等各种类型的原子及相关化学键区域的参数.利用上述参数计算了一些铁(Ⅱ)配合物的电荷分布,计算结果可以和从头算结果很好地相关联.  相似文献   

14.
In molecular simulations, calculation of environmentally dependent atomic charges is still a demanding task. Empirical and semiempirical methods have been proposed and applied to a wide range of problems with different success. In this paper, a new scheme based on the concept of electronegativity equalization is presented and its advantages over several other methods are discussed. This method is an extension of the fluctuation charge model [S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101, 6141 (1994)]. By allowing multiple electronic iterations at each nuclear step, the condition of electronegativity equalization can be satisfied to a selected precision. Molecular dynamics simulations using this new method, as well as several other methods, are performed on alpha quartz. Analysis of the simulated results shows that it is advantageous to use the iterative fluctuation charge model in several different situations.  相似文献   

15.
张强  张霞  杨忠志 《化学学报》2006,64(24):2425-2430
利用原子键电负性均衡结合分子力场方法(ABEEM/MM)对N-甲基乙酰胺(NMA)分子的水溶液体系进行了分子动力学模拟. 与经典的力场模型相比, 该方法中的静电势包含了分子内和分子间的静电极化作用, 以及分子内电荷转移影响, 同时加入了化学键等非原子中心电荷位点, 合理体现了分子中的电荷分布. 相对其它极化力场模型, 该模型具有计算量较小的特点. 在该模型下对NMA纯溶液和其水溶液体系进行了分子动力学模拟, 得到的径向分布函数、汽化热和偶极矩等物理量与实验值和其它极化力场方法符合很好, 合理描述了溶质与溶剂之间的静电极化和分子内的电荷转移.  相似文献   

16.
The charge-transfer energetics of interactions in a series of closed-shell cation-inert gas pairs is studied by using a model based on the electronegativity equalization principle. These results arc compared with those obtained from SCF calculations carried out at the STO-3G level. A model interaction potential is tested for these systems. The possible effect of an additional electrostatic factor in the charge transfer process is investigated.  相似文献   

17.
Atoms characterized by nonequivalent electronegativities form chemical bonds by exchanging electrical charge. The fraction of charge exchanged is dictated by the electronegativity differences among the system atoms. In the electronegativity equalization method, the charge distribution is estimated by forcing the system to relax to a common chemical potential, which corresponds to its configuration of energy minimum. By definition, this method cannot be applied to homonuclear bonds. A model is proposed to estimate the charge shared in molecular orbitals of homonuclear molecules. The model expands upon the electronegativity equalization method by adding formalism to describe the spin coupling characteristic of homonuclear bonds. Results are in excellent agreement with other quantum mechanical estimations of the charge distributions. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Atomic charges play a crucial role in the understanding and modeling of the chemical behavior of proteins. Fast assessment of atomic charge distributions in larger molecules can be performed by implementing the electronegativity equalization method (EEM). To further improve the accuracy of the EEM approach, a novel and efficient method based on Bader's concept of high degree fragment transferability of atomic charges has been proposed for the parameterization of atoms-in-molecules (AIM) charges of polypeptides or proteins. The EEM parameterization method considers both the factors of connectivity and hybridized states, and the effect of the local chemical environment in fragments or groups. The types of atoms were defined on the basis of the local chemical environments of the fragments or functional groups of these atoms. The fragment transferability feature of QTAIM indicates that the atomic properties for the contributing atoms can be reproduced if the chemical environment is comparable. The constituent fragments or functional groups of macromolecules such as polypeptides and proteins can be utilized as building blocks for the additive generation of their electronic densities. The main peptide group (NH―HαCα―C=O) of the polypeptide in the backbone was used as a building block to model the EEM parameters for reproducing the atomic charges in the polypeptides. A training set of 20 terminally blocked amino acids (Ac-X-NHMe, X = any neutral residue), which recreated the immediate local environment of the main chain fragments or functional groups of the polypeptides, were chosen for the calibration of AIM charges using the differential evolution (DE) algorithm. The effects of the optimized methods on the results were discussed and it was found that the DE algorithm showed a better performance for the objective function. The quality of the AIM charges obtained from the EEM method presented in this study was evaluated by comparison with those obtained from B3LYP/6-31G+(d, p) calculations for the two test tetrapeptides not contained in the training set. It was found that a remarkable improvement was achieved using the EEM model developed in this study as compared to the previous studies. The introduction of Bader's high fragment charge transfer model into the EEM provided a new scheme for its calibration and parameterization for larger systems such as polypeptides or polynucleotides, which possess highly repetitive segments. Among all types of atomic charges, only the AIM charges showed a significant meaning in experiments and could be obtained by X-ray diffraction experiments. Rapidly reproducing the accurate AIM charge for large systems seems to be more meaningful, especially for the prediction of protein-protein, protein-DNA, and drug-receptor recognition and interactions.  相似文献   

19.
The electronegativity equalization method (EEM) was developed by Mortier et al. as a semiempirical method based on the density-functional theory. After parameterization, in which EEM parameters A(i), B(i), and adjusting factor kappa are obtained, this approach can be used for calculation of average electronegativity and charge distribution in a molecule. The aim of this work is to perform the EEM parameterization using the Merz-Kollman-Singh (MK) charge distribution scheme obtained from B3LYP/6-31G* and HF/6-31G* calculations. To achieve this goal, we selected a set of 380 organic molecules from the Cambridge Structural Database (CSD) and used the methodology, which was recently successfully applied to EEM parameterization to calculate the HF/STO-3G Mulliken charges on large sets of molecules. In the case of B3LYP/6-31G* MK charges, we have improved the EEM parameters for already parameterized elements, specifically C, H, N, O, and F. Moreover, EEM parameters for S, Br, Cl, and Zn, which have not as yet been parameterized for this level of theory and basis set, we also developed. In the case of HF/6-31G* MK charges, we have developed the EEM parameters for C, H, N, O, S, Br, Cl, F, and Zn that have not been parameterized for this level of theory and basis set so far. The obtained EEM parameters were verified by a previously developed validation procedure and used for the charge calculation on a different set of 116 organic molecules from the CSD. The calculated EEM charges are in a very good agreement with the quantum mechanically obtained ab initio charges.  相似文献   

20.
Based on first-principles calculations, a decomposition scheme is proposed to investigate the molecular site-specific first-order hyperpolarizability (β) responses by means of Hirshfeld population analysis and finite field method. For a molecule, its β is decomposed into local and nonlocal contributions of individual atoms or groups. The former describes the response within the atomic sphere, while the latter describes the contributions from interatomic charge transfer. This scheme is then applied to six prototypical donor-acceptor (D-A) or D-π-A molecules for which the local and nonlocal hyperpolarizabilities are evaluated based on their MP2 density. Both the local and nonlocal parts exhibit site-specific characteristics, but vary differently with molecular structures. The local part depends mainly on the atomic attributes such as electronegativity and charge state, as well as its location in the molecule, while the nonlocal part relates to the ability and distance of charge delocalization within the molecule, increasing rapidly with molecular size. The proposed decomposition scheme provides a way to distinguish atomic or group contributions to molecular hyperpolarizabilities, which is useful in the molecular design for organic nonlinear optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号