首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A density functional theory study of the intrinsic stability of pure and bimetallic wires is presented. Several bimetallic combinations forming one-atom thick wires are studied. An explanation for the experimental instability of Cu wires in contrast to the stability of Au and Ag wires is given, which relies on the higher surface energy of the former. All the possible intercalations between Ni, Pd, Pt, Cu, Ag, and Au are studied. The bimetallic wires AuCu and AuAg were found to be the most stable ones. The reactivity of the latter two systems is also examined using hydrogen adsorption as a microscopic probe. It was found that at the inter-metal interface, up to second neighbors, Cu and Ag become more reactive and Au becomes more inert than the corresponding pure wires. These results are explained within the d-band model.  相似文献   

2.
The stability of coinage and noble metal nanowires supported on graphite steps is examined by density functional theory. In particular, we study the stability of supported gold and platinum wires and compare their chemical properties with those of surfaces and bare wires. A substantially stronger bond with graphite was found for platinum wires due to unfilled antibonding states, which are occupied in the case of gold. This difference has direct consequences for the adsorption of hydrogen. This reaction can occur either on the wire or directly on graphite steps. In the case of gold, the reaction is favoured on steps, while on platinum wires, it has no thermodynamical preferences. Our results suggest that, in early stages of wire formation, hydrogen could desorb gold from graphite, but not platinum.  相似文献   

3.
The evolution of hydrogen on Au(332) and Au(665) surfaces modified with Pd was studied by cyclic voltammetry in hydrogen-saturated sulfuric acid. A strong catalytic activity of Pd decorating the steps, and even monoatomic rows, reflected in the exchange current density for the hydrogen evolution reaction, was found. In comparison, the activity of Pd at terrace sites is negligible. This is explained by the previously observed weak adsorption of hydrogen at monoatomic Pd rows according to the Sabatier principle. For Au(665)/Pd electrodes where the Pd steps have been blocked with Cu, the catalytic activity decreases to values in the same order of magnitude of those for Au(665) surfaces modified with more than a full monolayer of Pd. No direct evidence of hydrogen spillover from Pd-covered areas to the Au substrate was found. Cu underpotential deposition measurements also suggest that no alloy formation takes place between the Cu atoms and the underlying Pd film, nor between Pd and the gold substrate. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

4.
用密度泛函理论研究了氢和硫原子在金属Pd、Au、Cu以及合金PdM3、Pd2M2 和Pd3M(111)表面的吸附(M=Au, Cu), 得到了覆盖率为0.25时最稳定的吸附位、结合能以及吸附前后表面的驰豫情况. 结果表明, 氢和硫均与Pd形成最稳定的吸附, Cu次之, Au的吸附最弱, 其在三种纯金属(111)表面的最稳定吸附位均为fcc位. 由于PdAu合金具有较大的晶格常数, Pd3Au 合金吸附氢的结合能甚至较纯Pd更大, 除此之外, 氢和硫在PdM合金表面的吸附基本随M组分的增加而减弱, 而最稳定的吸附位随金属种类和组成变化而变化. 根据计算得到的吸附结合能, 发现与PdCu合金相比, PdAu合金在Au含量较低(约25%, 摩尔分数)时, 氢和硫吸附的结合能下降较慢, 而Au含量较高(跃50%)时, 结合能迅速下降, 这表明含金量为25%-50%的PdAu合金有可能在保持相近透氢性能的同时, 比PdCu合金具有更好的抗硫毒性.  相似文献   

5.
Surface-enhanced Raman spectroscopy (SERS) studies of electrode/solution interfaces are important for understanding electrochemical processes. However, revealing the nature of reactions at well-defined single crystal electrode surfaces, which are SERS-inactive, remains challenging. In this work, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used for the first time to study electrochemical adsorption and hydrogenation reactions at single crystal surfaces in nonaqueous solvents. A roughened Au surface was also studied for comparison. The experimental results show that the hydrogenation of adsorbed p-ethynylaniline (PEAN) on roughened Au electrode surfaces occurred at very negative potentials in methanol because of the catalytic effect of surface plasmon resonance (SPR). However, because “hot electrons” were blocked by the silica shell of Au@SiO2 nanoparticles and aprotic acetonitrile was an ineffective hydrogen source, surface reactions at Au(111) were inhibited in the systems studied. Density functional theory (DFT) calculations revealed that the PEAN triple bond opened, allowing adsorption in a flat configuration on the Au(111) surface via two carbon atoms. This work provides an advanced understanding of electrochemical interfacial processes at single crystal surfaces in nonaqueous systems.  相似文献   

6.
Gold (Au) films with open interconnected macroporous walls and nanoparticles have been successfully sculptured using the hydrogen bubble dynamic template synthesis followed by a galvanic replacement reaction. Copper (Cu) films with open interconnected macroporous walls and nanoparticles were synthesized using the electrochemically generated hydrogen bubbles as a dynamic template. Then through a galvanic replacement reaction between the porous Cu sacrificial templates and KAu(CN)2 in solution, the porous Cu films were converted to porous Au films with the similar morphologies. Additional electrochemical dealloying process was introduced to remove the remaining Cu from the porous Au films. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and electrochemical methods were adopted to characterize the porous Au films. The resulted porous Au films show excellent catalytic activity toward the electrooxidation of glucose. A nonenzymatic glucose sensor based on those Au film electrodes shows a linear range from 2 to 10 mM with a sensitivity of 11.8 μA cm−2 mM−1, and a detection limit of 5 μM.  相似文献   

7.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

8.
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).  相似文献   

9.
In this work, we have used the static molecular simulations combined with an interatomic potential derived from the embedded‐atom method to study the adsorption and hetero‐diffusion on the (111) surface of Cu, Ag, and Au adatoms by using LAMMPS code. The investigation is performed for six heterogeneous systems such as Ag/Au(111), Ag/Cu(111), Au/Ag(111), Au/Cu(111), Cu/Ag(111), and Cu/Au(111). First, we have investigated the relaxation trends and the bond lengths of the atoms in the systems. The calculation results show that, the top layer spacing between the first and second layers of the Au(111), Ag(111), and Cu(111) substrates is contracted. This contraction is found to be more important in the Au(111) substrate. On the other hand, the strong reduction of the binding length is found in Au/Cu(111) for the different adsorption sites. In addition, the binding, adsorption, and static activation energies for all studied systems were examined. The results indicated that the binding and adsorption energies reached their maximum values in the Au/Cu(111) and Au/Ag(111) systems, respectively. Moreover, the static activation barriers for hopping diffusion on the (111) surfaces are found to be low compared with those found in the (100) and (110) surfaces. Therefore, our calculations showed that the difference in energy between the hcp and fcc sites on the (111) surfaces is very small. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Surface segregation effects on polycrystalline Au-Cu alloys (Au(0.80)Cu(0.20), Au(0.85)Cu(0.15) and Au(0.90)Cu(0.10)) were studied at room temperature by angle resolved XPS (ARXPS) and density functional theory (DFT) before and after exposure to O(2). Au surface enrichment was found as predicted from calculations showing that this process is energetically favourable, with a segregation energy for Au in a Cu matrix of -0.37 eV atom(-1). Surface enrichment with Cu was observed after exposure to O(2) due to its dissociative adsorption, in agreement with DFT calculations that predicted an energy gain of -1.80 eV atom(-1) for the transfer of Cu atoms to a surface containing adsorbed oxygen atoms, thus leading to an inversion in surface population.  相似文献   

11.
The growth of pentacene on suitable metallic templates is studied by means of low-energy electron diffraction and ultraviolet photoelectron spectroscopy. Highly ordered pentacene single layers can be prepared by deposition on filled d-band metal templates kept at 370 K. The presence of the steps for the Cu(119) vicinal surface and of the Au troughs for the Au(110)-(1 x 2) surface allows the formation of commensurate long-range ordered structures with (3 x 7) and (3 x 6) periodicities, respectively. A detailed analysis of the molecular induced electronic states evolution is performed for different growth morphologies. The adsorption energy of the ordered molecular single layers on the Au(110) surface is lower (1.90 eV) than on the Cu vicinal surface (2.36 eV), where the steps enhance the molecule adsorption energy.  相似文献   

12.
应用统计力学方法建立的电极过程速度方程,在假定氢析出反应遵循催化机理的前提下,提出吸附氢原子间排斥能估算方案,计算了Ni、Pt、Pd、Cu、Ag、Au等六种面心立方金属电极上氢析出反应η~lgi曲线,结果表明,其Tafel斜率b决定于电极表面吸附氢原子间的相互排斥作用,而截距a刚和金属原子半径、晶面点阵排列以及氢的吸附热等因素有关。  相似文献   

13.
We report the assembly properties of high density and high aspect ratio metal nanowire arrays (Au, Cu and Ag with diameters ranging from 40 to 250 nm) after release from the anodic alumina oxide (AAO) templates. Individual Ag and Cu nanowires were observed following release from the template, however, in the case of gold nanowires, the dispersion was dependent on size and aspect ratio. 40-100 nm gold wires aggregated to form bundles or disordered mats. We show that a simple cyanide-mediated release from the AAO template, results in isolated dispersion of wires even for the smallest wire diameters. Possible stabilising mechanisms for observed tendency of nanowires dispersion are discussed.  相似文献   

14.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析.缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附.计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

15.
《中国化学快报》2022,33(9):4380-4384
Carbon dioxide electrochemical reduction (CO2RR) has been recognized as an efficient way to mitigate CO2 emissions and alleviate the pressure on global warming and associated environmental consequences. Gold (Au) is reported as stable and active electrocatalysts to convert CO2 to CO at low overpotential due to its moderate adsorption strength of *COOH and *CO. The request for improved catalytic performance, however, is motivated by current unsatisfied catalytic selectivity because of the side hydrogen evolution reaction. In this context, the design of Au based binary catalysts that can boost CO selectivity is of great interest. In the present work, we report that Au nanoparticles can be feasibly dispersed and anchored on silicon nanowires to form Au-Si binary nanomaterials. The Au-Si may stably drive CO2RR with a CO Faraday efficiency of 95.6% at ?0.6 V vs. RHE in 0.5 mol/L KHCO3 solution. Such selectivity outperforms Au particles by up to 61%. Controlled experiments illustrate that such catalytic enhancement can chiefly be ascribed to electronic effects of binary catalysts. Theoretical calculations reveal that spontaneously produced silicon oxide may not only inhibit hydrogen evolution reaction, but also stabilize the key intermediate *COOH in CO formation.  相似文献   

16.
An electrochemical deposition method using high-frequency alternating current (AC) signal is reported here for the in situ synthesis and assembly of Au nanowires and nanoactuators on microelectrodes without using any masks or templates. High conductivity of 3.79 ± 0.14 × 107 Ω 1 m 1 is achieved on the Au nanowires assembled between electrodes. Au nanoactuators with expansion ratio of more than 500% can be fabricated at higher frequency. The actuators can act as claws to grab SiO2 nanoparticles in a water solution when driven by an alternating electric field. Disconnected nanowires and nanoparticles which self-aligned around the electrodes were also obtained at lower gold ion concentration, indicating a different current transfer mode in AC electrodeposition.  相似文献   

17.
We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(Pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by ~1.5 fold after a simulated catalyst lifetime.  相似文献   

18.
In-situ Raman/SERS studies of molecular adsorption/reaction behaviors at well-defined electrochemical interfaces are important for understanding the fundamentals of electrochemical processes. However, it is still a great challenge to perform such studies on model single-crystal surfaces as the smooth surface cannot support surface plasmon resonance (SPR). In this work, shell-isolated nanoparticle-enhanced Raman spectroscopy was combined with an electrochemical method (EC-SHINERS) to study the adsorption and redox transformation of a resonant molecule viologen HS-8V8H at Au(hkl) single-crystal electrodes. Changes in the molecular structure with potential were identified on different single-crystal surfaces, which explained the transformation process of viologen from V2 + state to V+ and then V0. Facet-dependent SERS enhancement was also observed, which results from the different imaginary part of the dielectric function on Au(111), Au(100) and Au(110), and is supported by the FEM simulations. Furthermore, a nonlinear resonant Raman process has been directly observed in our experiments, which is consistent with the simulation results. These findings increase our understanding of the electrochemical behavior of molecules in model systems.  相似文献   

19.
《印度化学会志》2021,98(5):100060
In order to find a solution of energy-related problems, sophisticated hydrogen storing materials are needed as hydrogen is an abundant and environment friendly fuel. We have investigated the hydrogen storage potential of Ng inserted metal acetylide and metal cyanide compounds (metal ​= ​Cu, Ag and Au) at the ωB97X-D/cc-pVTZ-PP level of theory. Due to the difference in electronegativity and formal charge on metal atoms in the insertion compounds, the interaction with the hydrogen molecule is expected to be different. The adsorption energies, the free energy of adsorption, natural charges on atomic centers/moieties are obtained through the natural population analysis, and energy decomposition analysis has also been carried out for nH2···MNgCCH and nH2···MNgCN (n ​= ​1–3). The hydrogen adsorption capacity of the strongest and the weakest cases has also been investigated. Both the insertion compounds, MNgCCH and MNgCN, are found to adsorb a maximum of three hydrogen molecules on the metal site. The single H2 adsorbed minimum energy structures of studied compounds show a “T-shaped” orientation while double H2 adsorbed minimum energy structures are of “Y- shaped” geometry and those of tricoordinated structures resemble “Td-like” shape. The negative value of Gibbs free energy change suggests the thermodynamical spontaneity of the hydrogen adsorption process.  相似文献   

20.
We have investigated the stability and catalytic activity of epitaxial overlayers of rhodium on Au(111) and Pd(111). Both surfaces show a strong affinity for hydrogen. We have calculated the energy of adsorption both for a strongly and a more weakly adsorbed species; the latter is the intermediate in the hydrogen evolution reaction. Both the energy of activation for hydrogen adsorption (Volmer reaction) and hydrogen recombination (Tafel reaction) are very low, suggesting that these overlayers are excellent catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号