共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature. 相似文献
2.
Ab-initio molecular orbital (MO) and direct ab initio dynamics calculations have been applied to the gas phase SN2 reaction F− + CH3Cl → CH3F + Cl−. Several basis sets were examined in order to select the most convenient and best fitted basis set to that of high-quality calculations. The Hartree–Fock (HF) 3−21+G(d) calculation reasonably represents a potential energy surface calculated at the MP2/6−311++G(2df,2pd) level. A direct ab initio dynamics calculation at the HF/3−21+G(d) level was carried out for the SN2 reaction. A full dimensional ab initio potential energy surface including all degrees of freedom was used in the dynamics calculation. Total energies and gradients were calculated at each time step. Two initial configurations at time zero were examined in the direct dynamics calculations: one is a near collinear collision, and the other is a side-attack collision. It was found that in the near collinear collision almost all total available energy is partitioned into two modes: the relative translational mode between the products (40%) and the C − F stretching mode (60%). The other internal modes of CH3F were still in the ground state. The lifetimes of the early- and late-complexes F− … CH3Cl and FCH3 … Cl− are significantly short enough to dissociate directly to the products. On the other hand, in the side-attack collision, the relative translation energy was about 20% of total available energy. 相似文献
3.
Bin Jing Jing-yao Liu Ze-sheng Li Ying Wang Li Wang Hong-qing He Chia-chung Sun 《Journal of Molecular Structure》2005,732(1-3):225-231
The dynamics properties of the hydrogen abstraction reaction CF3O+CH4→CF3OH+CH3 are studied by dual-level direct dynamics method. Optimization calculations are preformed by B3LYP and MP2 with the 6-311G(d,p) basis set, and the single-point calculations are done at the multi-coefficient correction method based on quadratic configuration interaction with single and double excitations (MC-QCISD) method. The rate constants are evaluated by canonical variational transition-state theory with a small-curvature tunneling correction over a wide range of temperature 200–2000 K. The agreement between theoretical and experimental rate constants is good in the measured temperature range. The calculated results show that the variational effect is small and almost neglected over the whole temperature range, whereas, the tunneling correction plays a role in the lower temperature range. The kinetic isotope effect for the reaction is ‘normal’. The value of kH/kD is 2.38 at room temperature and it decreases with the temperature increasing. 相似文献
4.
CH2+O2反应的反应机理 总被引:3,自引:0,他引:3
The mechanisms of the CH2+ O2→ H2O+ CO and CH2+ O2→ H2+ CO2 reactions have been studied by performing ab initio CAS(8,8)/6-31G(d,p) calculations, and five intermediates(IMn) and eight transitions(TSn) have been located along the reaction paths. The predicted path for the CH2+ O2→ H2O+ CO is: CH2+ O2→ TS1→ IM1→ TS2→ IM2→ TS3→ IM3→ TS4→ IM4a→ TS5→ H2O+ CO. For the CH2+ O2→ H2+ CO2 reaction, there are two paths: (i) CH2+ O2→ TS1→ IM1→ TS2→ IM2→ TS3→ IM3→ TS6→ H2+ CO2 and (ii) CH2+ O2→ TS1→ IM1→ TS2→ IM2→ TS3→ IM3→ TS4→ IM4a→ TS7→ IM4b→ TS8→ H2+ CO2, with the latter path more favorable energetically. 相似文献
5.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date. 相似文献
6.
CH3NO2和CH3自由基吸氢反应途径和变分速率常数计算 总被引:1,自引:0,他引:1
采用MP2(full)/6-311G(d, p)从头算方法,优化了硝基甲烷和甲基自由基吸氢反应的过渡态结构,经QCISD(T)方法进行能量校正,得出该反应的正逆向反应的活化位垒分别是58.21 kJ•mol-1和67.17 kJ•mol-1.沿IRC分析指出该反应是氢转移协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在反应坐标S的-0.9~1.0(amu)1/2bohr之间;在温度为800~2600 K范围内,运用改进的变分过渡态理论(ICVT),计算了该反应的速率常数,并与实验类比所得的速率常数随温度的变化趋势进行了比较. 相似文献
7.
Ab initio-TST calculations were carried out to study the kinetics of the title reaction. The H atom and the OH abstraction paths leading to the same products HO2 and OH have been considered. The ZPE and BSSE corrected classical barrier heights were predicted to be 7.4 and 17.3 kcal/mol, respectively. Calculated thermal rate constants over the temperature range 300–5000 K showed that the H-abstraction path was the most likely to occur for temperatures below 2500 K which confirms the result found in a previous study [Y. Tarchouna, M. Bahri, N. Jaïdane, Z. Ben Lakdar, J. Mol. Struct. (Theochem), 189 (2003) 664]. The contribution of OH abstraction path to the reaction was predicted to be important for high temperatures. 相似文献
8.
Zheng Xiange Wang Zhizhong Feng Jikang Tang Auchin 《Journal of Molecular Structure》1999,469(1-3):115-119
A wide variety of geometrical structures of NLi6 molecule were studied using HF ab initio and BLYP-DFT techniques. Three stationary configurations which take D4h, D3d and D2d configurations were obtained. Their equilibrium geometries and fundamental frequencies were calculated at HF and BLYP-DFT levels. Among the three stable states, the global minimum prefers D3d configuration, which is different from those of CLi6 and OLi6. The D3d isomer of NLi6 is 3.43 and 28.45 kcal/mol lower in energy than the D4h and D2d ones in the DFT calculation, respectively. All calculations were performed with 6-31G* polarized split-valence basis set. 相似文献
9.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σ−g) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely. 相似文献
10.
The possibility of calculating accurate ab initio bond angles is examined using a sample of 29 molecules (35 independent angles) containing only first row atoms and whose equilibrium structures are known. Three different correlated methods are compared: MP2, CCSD(T), and DFT, using the hybrid functional B3LYP. The convergence of Dunning's correlation consistent polarized valence basis sets, cc-pVnZ is also studied. It is found that the CCSD(T) method is consistently the most accurate; the DFT/B3LYP being slightly less reliable than MP2. It is shown that when convergence of the basis set is achieved (which is dependent on the kind of bonding) and when the effect of diffuse functions on electronegative atoms is taken into account, a high accuracy may be obtained: 0.03° for the median of absolute deviations or 0.07° for the mean absolute deviation. It does not exclude the possibility that the ab initio method may fail in some particular case, for instance when a large amplitude motion is involved. The MP2/cc-pVQZ method gives a mean absolute deviation of 0.22° to be compared with the 0.07° of the CCSD(T) method. To obtain these results, it was necessary to reanalyze the structure of a few molecules, particularly, a new and more accurate structure is proposed for nitroxyl, HNO and hydrogen peroxide, H2O2. 相似文献
11.
Gunnar Nyman 《Chemical physics letters》1995,240(5-6):571-577
The effect on the thermal rate constant and the differential cross-sections of varying the dimensionality of quantum scattering calculations of a polyatomic reaction is investigated. The rotating bond approximation (RBA; 3D) and a rotating line approximation (RLA; 2D) are used for the CH4 + OH → CH3 + H2O reaction. It is found that the RBA and RLA results are in close agreement when an adiabatic treatment is used for the degree of freedom which is treated explicitly in the RBA but not in the RLA. 相似文献
12.
Here we report ab initio and density functional results for molecular properties of ethyl azidoacetate (N3CH2COOC2H5) and for the corresponding singly ionized structure (N3CH2COOC2H5+). Ab initio ionization energies based on Koopmans’ theorem are in excellent agreement with the experimental data from ultraviolet photoelectron spectroscopy. DFT adiabatic energy differences between neutral and ionized structures are very sensitive to electronic correlation effects and are not in very good agreement with experiment. The results for the structure and vibrational frequencies are compared with the experimental data of related molecular structures. 相似文献
13.
The B1LYP, B3LYP and MPW1PW91 density functional theory methods combined with the 6-311G(2d, 2p) basis set were used to carry out a density functional theory study of the NH3+HCO3H→HCOOH+H3NO reaction. The purpose of this work is to study the reaction mechanism from the viewpoint of bond order transformations throughout the course of the reaction, and propose the reasons for the apparent differences in activation barriers. 相似文献
14.
The intramolecular amide hydrolysis reactions of N-methylmaleamic acids (NMMA) are studied at the MP2/6-31G**//RHF/4-31G level of theory as model reactions of peptide bond cleavage by a proteolytic enzyme. In contrast to the previously reported results for a bimolecular reaction model of peptide hydrolysis, the unimolecular reactions studied here proceed via the concerted pathway in which the C–O bond formation and the release of methylamine occur simultaneously in preference to the stepwise one. The determination of an intrinsic reaction coordinate shows that the reaction is facilitated by the intramolecular proton transfer from the undissociated carboxyl group to the nitrogen of the leaving amine group. Mainly because of the increase in activation energy, methyl substitution at the 2-position retards the hydrolysis reaction rate by a factor of 14 compared to the reaction of the unsubstituted molecule. In contrast, additional methyl substitution at 3-position leads to 35-fold increase in the reaction rate. These variations of reactivity are caused by the charge redistributions in the amide group induced by methyl substitutions and the resulting changes in electrophilicity of the aminocarbonyl carbon. 相似文献
15.
The self-consistent reaction field (SCRF) method based on Onsager's reaction field theory is applied to investigate the effect of polar media on molecular structures of complexes of trimethylamime (TMA) with SOx (x=2,3). The calculated SCRF N–S bond lengths at the MPW1PW91/6-311+G(3df) level are in satisfactory agreement with the experimental N–S bond lengths for the TMA–SOx upon crystallization. The results are enough to demonstrate the usefulness of the reaction field theory in providing qualitative understanding of the medium effect on the partially bonded system such as TMA–SOx. 相似文献
16.
Branko S Jursic 《Journal of Molecular Structure》1998,434(1-3):67-73
The HF, MP2, MP3, MP4, and QCISD ab initio methods were compared with local, hybrid, and gradient-corrected density functional theory (DFT) methods for computing structures and energies of N2F4 rotamers. In all DFT calculations 6-311 + G(2d) basis set was used. The generated structures energies of trans- and gauche-N2F4 rotamers, and their dissociation energies to nitrogen difluoride were compared with experimental data. Suitable hybrid and gradient-corrected DFT methods for determining structures and energies for these and similar molecular systems were discussed. 相似文献
17.
Khodayar Gholivand Carlos O. Della Vdova Mauricio F. Erben Fresia Mojahed Ahlam Madani Alizadehgan 《Journal of Molecular Structure》2007,840(1-3):66-70
Using phosphorus pentachloride as a substrate, a new carbacyclamidophosphate, N,N″-bis (2,6-dimethylmorpholino), N″-dichloroacetyl phosphoric triamide (1) has been synthesized and characterized by 1H, 31P and 13C NMR, IR spectroscopy and elemental analysis. Due to the presence of methyl disubstituted morpholine rings and the dichloroacetamide group, several conformers can be considered for this molecule. The 31P{1H} NMR spectra for the isomeric mixture of synthesized compound showed four signals with the ratio 67.1; 19.0; 12.2; 1.7, which indicates four independent conformers. The 1H NMR spectra confirmed these results. The conformational space and the molecular geometry of the molecule in the gaseous phase have been studied using the B3LYP method of approximation, with 6-31G and 6-311++G** basis sets. 相似文献
18.
19.
Heats of formation for ClO3, ClO4, Cl2O3, Cl2O4, Cl2O5, Cl2O6 and Cl2O7 molecules are determined at the B3LYP, B3PW91, mPW1PW91 and B1LYP levels of the density functional theory employing a series of extended basis sets, and using Gaussian-3 model chemistries. Modified Gaussian-3 calculations, which employ accurate B3LYP/6-311+G(3d2f) molecular geometries and vibrational frequencies, were also performed. Heats of formation were calculated from both total atomization energies and isodesmic reaction schemes. The latter method in conjunction with Gaussian-3 models leads to the most reliable results. The best values at 298 K for ClO3, ClO4, Cl2O3 and Cl2O4 as derived from an average of G3//B3LYP and G3//B3LYP/6-311+G(3d2f) calculations are 43.1, 54.8, 31.7 and 37.4 kcal mol−1. From calculations carried out at the G3(MP2)//B3LYP and G3(MP2)//B3LYP/6-311+G(3d2f) levels, heats of formation for Cl2O5, Cl2O6 and Cl2O7 are predicted to be 53.2, 52.2 and 61.5 kcal mol−1. All best values are reproduced within 1 kcal mol−1 by using mPW1PW91/6-311+G(3d2f) isodesmic energies. Enthalpy changes for relevant Cl–O bond fission reactions are reported. Comparisons with previous thermodynamics data are made. 相似文献
20.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6. 相似文献