首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation of Erwinia (E) gum in a 0.2 M NaCl aqueous solution was investigated by multi‐angle laser light scattering and gel permeation chromatography (GPC) combined with light scattering. The GPC chromatograms of five fractions contained two peaks; the fractions had the same elution volume but different peak areas, suggesting that aggregates and single chains coexisted in the solution at 25 °C. The apparent weight‐average molecular weights (Mw) of the aggregates and single chains for each fraction were all about 2.1 × 106 and 7.8 × 104, respectively. This indicates that the aggregates were composed of about 27 molecules of E gum in the concentration range used (1.0 × 10−6 to 5.0 × 10−4 g/mL). The weight fraction of the aggregates (wag) increased with increasing concentration, but the aggregates still existed even in an extremely dilute solution. The fractionation process and polymer concentration hardly affected the apparent aggregation number but significantly changed wag. The E‐gum Mw decreased sharply with an increase in temperature. When the E‐gum solution was kept at 100 °C, wag decreased sharply for 20 h and leveled off after 100 h. Once the aggregates were decomposed at a higher temperature, no aggregation was observed in the solution at 25 °C, indicating that the aggregation was irreversible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1352–1358, 2000  相似文献   

2.
Aeromonas (A) gum, an acidic hetero polysaccharide, in 0.2 M LiCl/dimethyl sulfoxide (DMSO) was fractionated satisfactorily according to the nonsolvent addition method. Eight fractions were chosen to examine their aggregation behavior in aqueous solution. The weight‐average molecular weight (Mw), radius of gyration 〈S21/2, and intrinsic viscosities [η] of the fractions in 0.2 M LiCl/DMSO and 0.5 M NaCl aqueous solution at 25 °C were measured by static light scattering and viscometry. The results indicated that the A gum was aggregated in 0.5 M NaCl aqueous solution at 25 °C, and the aggregates were broken in 0.2 M LiCl/DMSO. The apparent weight‐average aggregation number (Nap) of the fractions increased with the process of fractionation, that is, Nap increased from 1.1 to 15 with decreasing Mw of the single chain. The fractions obtained by treating with DMSO were more easily dissociated in the aqueous solution, and its Nap was lower than that of the A gum fractions that were not treated with DMSO. Moreover, the A gum molecules with relatively low Mw aggregated easily to form a compact spherelike structure in the aqueous solution. Elemental analysis and 13C NMR spectroscopy indicated that DMSO was adsorbed on the A gum molecules caused by the fractionation program; DMSO not only prevented the polysaccharide aggregation but also increased the solubility. A model has been proposed to describe the aggregation behavior of the A gum chains with DMSO overcoat in the aqueous solution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2269–2276, 2002  相似文献   

3.
The aggregation behavior of carboxymethyl chitosan (CM‐chitosan) with various degrees of deacetylation (DD) and substitution (DS) was characterized with viscometry, gel permeation chromatography (GPC), and GPC coupled with laser light scattering (GPC‐LLS). The results indicate that CM‐chitosan has a strong tendency to form aggregates in aqueous solution and the aggregation behavior depends on DD and DS values. The apparent aggregation number (Nap), the gyration radius (Rg), and the weight fraction of the aggregates (Fa) reached maximum at a DD value of 50%, then decreased, with the DD value deviating from 50%. A higher DS value helped to form aggregates; when the DS value increased from 0.65 to above 1.0, Nap and Rg increased sharply. The dependence of the refractive index increment (dn/dc) on the DD and DS values was related to variation of the charge density and the hydrophobic interaction along the molecular chains. The conformations of CM‐chitosan aggregates were studied by the LLS method. The aggregates showed a spherical shape, and the chain stiffness increased with introduction of the acetyl groups. The DS value had no clear influence on the chain conformation that was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 296–305, 2005  相似文献   

4.
Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose andglucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and arotational viscometer. Its weight-average molecular weight M_w and intrinsic viscosity [η] in 0.2 mol/L NaClaqueous solution were measured by light scattering method at 35℃and viscometry at 25℃and found to be1.06×10~6 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gelpermeation chromatography (GPC). These results indicated that E gum in water has exceedingly highviscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreasedwith increasing temperature, and the turning point appeared at 38℃for dilute solution and 80℃forconcentrated solution suggesting that the aggregates of E gum in water started to disaggregate under thesetemperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimentalresults indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.  相似文献   

5.
The aggregation of pachyman, β-(1 → 3)-D -glucan (Mw = 1.68 × 105) from the Poria cocos mycelia, was investigated using static and dynamic laser light scattering (LLS) in dimethyl sulfoxide (DMSO) containing about 15% water, which leads to large aggregates. Both the time dependence of hydrodynamic radius and the angle dependence of the scattering intensity were used to calculate the fractal dimension (df) of the aggregates. The aggregation rate and average size of aggregates increase dramatically with increasing the polymer concentration from 1.7 × 10−4 g/mL to 8.6 × 10−4 g/mL, and with the decrease of the solvent quality, that is, water content from 13 to 15%. In the cases, the fractal dimensions change from 1.94 to 2.43 and from 1.92 to 2.54, respectively, suggesting that transforms of aggregation processes: a slow process called reaction-limited cluster aggregation (RLCA) to a fast process called diffusion-limited cluster aggregation (DLCA) in different polymer concentrations and water content. The fractal dimensions above 2 of the fast aggregation is larger than the 1.75 predicted for the ideal DLCA model, suggesting that the aggregation involves a restructuring process through the interchain hydrogen bonding interaction. There are no aggregates of pachyman in DMSO without water, but aggregates formed in the DMSO containing 15% water at 25°C as a compact structure. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3201–3207, 1999  相似文献   

6.
Hydrosilylation polymerizations of 1,1‐dimethyl‐2,5‐bis(4‐ethynylphenyl)‐3,4‐diphenylsilole with aromatic silylhydrides including 1,4‐bis(dimethylsilyl)benzene, 4,4′‐bis(dimethylsilyl)biphenyl, 2,5‐bis(dimethylsilyl)thiophene, and 2,7‐bis(dimethylsilyl)‐9,9‐dihexylfluorene in the presence of Rh(PPh3)3Cl catalyst in refluxed tetrahydrofuran afford a series of silole‐containing poly(silylenevinylene)s. Under optimum condition, the alkyne polyhydrosilylation reactions progress efficiently and regioselectively, yielding polymers with high molecular weights (Mw up to 95,300) and good stereoregularity (E content close to 99%) in high yields (up to 92%). The polymers are processable and thermally stable, with high decomposition temperatures in the range of 420?449 °C corresponding to 5% weight loss. They are weakly fluorescent in the solution state but become emissive in the aggregate and film states, demonstrating their aggregation‐enhanced emission characteristics. The explosive sensing capabilities of the polymers are examined in both solution and aggregate states. The emissions of the polymers aggregates in aqueous mixture are quenched more efficiently by picric acid in an exponential pattern with high quenching constants (up to 27,949 L mol?1), suggesting that the polymers aggregates are sensitive chemosensors for explosive detection. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Chain‐growth condensation polymerization of p‐aminobenzoic acid esters 1 bearing a tri(ethylene glycol) monomethyl ether side chain on the nitrogen atom was investigated by using lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. The methyl ester monomer 1a afforded polymer with low molecular weight and a broad molecular weight distribution, whereas the polymerization of the phenyl ester monomer 1b at ?20 °C yielded polymer with controlled molecular weight (Mn = 2800–13,400) and low polydispersity (Mw/Mn = 1.10–1.15). Block copolymerization of 1b and 4‐(octylamino)benzoic acid methyl ester ( 2 ) was further investigated. We found that block copolymer of poly 1b and poly 2 with defined molecular weight and low polydispersity was obtained when the polymerization of 1b was initiated with equimolar LiHMDS at ?20 °C and continued at ?50 °C, followed by addition of 2 and equimolar LiHMDS at ?10 °C. Spherical aggregates were formed when a solution of poly 1b in THF was dropped on a glass plate and dried at room temperature, although the block copolymer of poly 1b and poly 2 did not afford similar aggregates under the same conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1357–1363, 2010  相似文献   

8.
Sugar fluorides were found to undergo powder‐to‐powder polycondensation without any catalyst at 110–160 °C under vacuum, giving highly branched polysaccharides (Conv. = 40–95%, Mw = 1400–20,000). The cross‐polarized optical microscopy at 110 °C disclosed that the crystal shape of α‐glucosyl fluoride ( FGlc ) was unchanged throughout the polymerization in spite of producing the amorphous polymer ( Poly‐FGlc ). The solid‐state post polymerization of Poly‐FGlc (Mw: 2700) at 180 °C increased the higher molecular weight (Mw: 8900). The product polysaccharide was per‐O‐methylated and subjected to structure analyses. Acid‐hydrolysis, which gave a variety of the partially O‐methylated monosaccharides, suggested that the product polysaccharides had a highly branched structure consisting of all of the possible glycosidic linkages. MALDI‐TOF mass analysis revealed that the 1,6‐anhydride terminal unit was formed and participated to the polymerization. Interestingly, α‐maltosyl fluoride hydrate ( FMal·H 2 O ) was polymerized at the lower temperature (100 °C) than the anhydrate ( FMal ), which required 160 °C for the polymerization. They produced different structure polymers even from the same monomer. The polymer from the former consisted of the disaccharide‐repeating unit, while the repeating unit of the polymer from the latter was the monosaccharide, which was formed by the acetal exchange reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3851–3860, 2007  相似文献   

9.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

10.
The nanostructure of the fibrillar supramolecular aggregates generated in decane solutions of homoditopic heterocomplementary monomers forming sextuple hydrogen‐bond‐mediated self‐assemblies was investigated by small‐angle neutron scattering and cryogenic‐temperature transmission electron microscopy. The persistence length (Lp) of the fibrillar aggregates was found to be ~18 nm, as inferred from combined measurements of the radius of gyration and of the contour length. The values of both the weight‐average molecular weight and the mass per unit length of the fibers suggest that the latter consist of few aggregated monomolecular wires. At T = 25 °C, the formation of branched aggregates occurs around the crossover concentration, C*, between the dilute and semidilute regimes, whereas the classical behavior of equilibrium polymers is observed at T = 65 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 103–115, 2007  相似文献   

11.
To prepare ultrahigh molecular weight (UHMW) poly(N‐vinylcarbazole) (PVCZ) with a high conversion, I heterogeneous‐solution‐polymerized N‐vinylcarbazole (VCZ) in methanol/tertiary butyl alcohol (TBA) at 25, 35, and 45 °C with a low‐temperature initiator, 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN), and I investigated the effects of the polymerization conditions on the polymerization behavior and molecular parameters of PVCZ. A low‐polymerization temperature with ADMVN, a heterogeneous system with methanol, and a low chain transfer with TBA proved to be successful in obtaining PVCZ of UHMW [weight‐average molecular weight (Mw) > 3,000,000] and high conversion (>80%) with a smaller temperature rise during polymerization but still of free‐radical polymerization by an azoinitiator. The polymerization rate of VCZ in methanol/TBA at 25 °C was proportional to the 0.97 power of the ADMVN concentration, indicating a heterogeneous nature for the polymerization. The molecular weight was higher and the molecular weight distribution was narrower with PVCZ polymerized at lower temperatures. For PVCZ produced in methanol/TBA at 25 °C with an ADMVN concentration of 0.0001 mol/mol of VCZ, an Mw of 3,230,000 was obtained, with a polydispersity index of 2.4. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 539–545, 2001  相似文献   

12.
Aqueous polysaccharide blends, formed from 2.5% (w/v) solution of hydroxypropyl guar gum (HPG) and 2.5% (w/v) solution of carboxymethyl cellulose (CMC) according to different blending ratios, were investigated at 20 °C in terms of their shear-dependent viscosity and thixotropic properties. The Cross viscosity equation was found to fit the shear-dependent viscosity data with reasonable accuracy. When the HPG solution with the mass fraction (f HPG) of 0.87 was mixed, the zero shear viscosity (η o) of the corresponding blend was found to be 168.5753 Pa s, while the η o values of component HPG and CMC solutions were found to be 3.3859 and 98.6525 Pa s, respectively. For the aqueous HPG/CMC blends investigated, the resulting zero shear viscosity was observed to be much greater than the combined zero shear viscosity of the component polysaccharide solutions, showing a synergistic viscosity property. The quantitative determination of the hysteresis loop area, developed during viscometer tests on shear rate–shear stress reverse paths, was used to describe the thixotropic behavior. When compared with aqueous solutions of the component polysaccharides, these polysaccharide blends could afford enhanced thixotropic property. Maximum thixotropy synergism was observed for the HPG/CMC blend with the f HPG of 0.67.  相似文献   

13.
Novel thermoresponsive double‐hydrophilic fluorinated block copolymers were successfully synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Poly[N‐(2,2‐difluoroethyl)acrylamide] (P2F) was synthesized via RAFT polymerization of N‐(2,2‐difluoroethyl)acrylamide (M2F) using 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methylpropionic acid (DMP) as the chain transfer agent (CTA) and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The resulting P2F macroCTA was further chain extended with N‐(2‐fluoroethyl)acrylamide (M1F) to yield poly{[N‐(2,2‐difluoroethyl)acrylamide]‐b‐[N‐(2‐fluoroethyl)acrylamide]} (P2F‐b‐P1F) block copolymers with different lengths of the P1F block. Molecular weight and molecular weight distribution were determined by gel permeation chromatography. The average molecular weight (Mn) of the resulting polymers ranged from 2.9 × 104 to 5.8 × 104 depending on the length of the P1F block. The molecular weight distribution was low (Mw/Mn = 1.11–1.19). Turbidimetry by UV‐Visble (UV‐Vis) spectroscopy, dynamic light scattering, and in situ temperature‐dependent 1H NMR measurements demonstrated that the P2F block underwent a thermal transition from hydrophilic to hydrophobic, which in turn induced self‐assembly from unimers to aggregates. Transmission electron microscopy studies demonstrated that polymeric aggregates formed from an aqueous solution of P2F‐b‐P1F at 60 °C were disrupted by cooling down to 20 °C and regenerated by heating to 60 °C. Temperature‐triggered release of a model hydrophobic drug, coumarin 102, was also demonstrated. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
The influence of small alkylamines with increasing carbon chain length (≤5) on the temperature‐induced precipitation of two N‐alkylacrylamide oligomers, poly‐N‐isopropylacrylamide [PNIPAAm; weight‐average molecular weight (Mw ) = 1600 g/mol] and poly‐N,N‐diethylacrylamide (PDEAAm; Mw = 4000 g/mol), from an aqueous solution was investigated. The alkylamines in question were too small to form micelles in the classical sense but were capable of premicellar aggregation. PNIPAAm was prepared by radical polymerization in the presence of a chain‐transfer agent and, therefore, carried a carboxylic acid end group. The structure was heterotactic. PDEAAm was prepared by anionic polymerization and, therefore, carried a butyl end group. The structure was predominately isotactic. The solubility of the oligomers was investigated by cloud‐point measurements and differential scanning calorimetry. In addition, pyrene was used as a fluorescent polarity probe. Alkylamines up to C2 depressed the lower critical solution temperature (LCST) of PNIPAAm, whereas higher alkylamines first depressed the LCST and at higher concentrations elevated it. The LCST minimum showed a clear dependence on the alkyl chain length and structure. For PDEAAm, only pentylamine addition resulted in an LCST minimum. Otherwise, the LCST was raised. When the critical self‐association concentration (CSAC) of the alkylamines in water was compared to the critical association concentration (CAC) in aqueous oligomer solutions, PDEAAm, but not PNIPAAm, stabilized mixed aggregates (CAC < CSAC). The transition enthalpy of PNIPAAm decreased with an increasing alkylamine concentration and became 0 above the CAC. For PDEAAm, no transition endotherm could be recorded above an alkylamine concentration of 0.1 M. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4218–4229, 2000  相似文献   

15.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

16.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

17.
The present article considers the coil‐to‐globule transition behavior of atactic and syndiotactic poly(methyl methacrylates), (PMMA) in their theta solvent, n‐butyl chloride (nBuCl). Changes in Rh in these polymers with temperature in dilute theta solutions were investigated by dynamic light scattering. The hydrodynamic size of atactic PMMA (a‐PMMA‐1) in nBuCl (Mw: 2.55 × 106 g/mol) decreases to 61% of that in the unperturbed state at 13.0°C. Atactic PMMA (a‐PMMA‐2) with higher molecular weight (Mw: 3.3 × 106 g/mol) shows higher contraction in the same theta solvent (αη = Rh(T)/Rh (θ) = 0.44) at a lower temperature, 7.25°C. Although syndiotactic PMMA (s‐PMMA) has lower molecular weight than that of atactic samples (Mw: 1.2 × 106), a comparable chain collapse was observed (αη = 0.63) at 9.0°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2253–2260, 1999  相似文献   

18.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

19.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

20.
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号