共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved compound mathematical model is established to simulate the attenuation of hydraulic transients with laminar-turbulent alternations,which usually occur when the pipeline flow velocity fluctuates near the critical velocity.The laminar friction resistance and the turbulent friction resistance are considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of the valve closing process are simulated using the model.A more reasonable attenuation of hydraulic transients is obtained.The accurate attenuation is more distinct than that obtained from the traditional mathematical model.The research shows that the hydraulic transient is a type of energy waves,and its attenuation is caused by the friction resistance.The laminar friction resistance is more important than the turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise the turbulent friction resistance is more important.The laminar friction resistance is important in the attenuation of hydraulic transients for the closing process.Thus,it is significant to consider the different resistances separately to obtain more accurate attenuation of hydraulic transients. 相似文献
2.
杨翔翔 《应用数学和力学(英文版)》1988,9(3):267-278
Circular fins are used extensively in heat exchange devices to increase the heat transfer. For economic purposes, the traditional approach to the optimization of fins consists of minimizing the comsumption (investment) of fin material for the excution of a specified heat transfer task. The minimum weight cooling fin has optional profile to be a concave parabola. Therefore, the optimum geometric dimensions of circular fins of parabolic profile with variable thermal parameters are studied. The effect of the two pertinent physical parameters-thermal conductivity variation parameter α and the index of the heat transfer coefficient variationm upon the optimum geometric dimensions is also studied. The results pressented can be used as the design guideline for engineering practice. 相似文献
3.
Numerical simulations have been carried out to study pulsatile laminar flows in a pipe with an axisymmetric ringtype constriction. Three types of pulsatile flows were investigated, namely a physiological flow, a pure sinusoidal flow and a non-zero mean velocity sinusoidal flow. The laminar flow governing equations were solved by the SIMPLE algorithm on a non-staggered grid and a modified Crank-Nicolson approximation was used to discretrize the momentum equations with respect to time. The maximum flow Reynolds numer (Re) is 100. The Womersley number (Nw) ranges from 0 to 50, with the corresponding Strouhal number (St) ranging from 0 to 3·98. The constriction opening ratio (d/D) and thickness ratio (h/D) are fixed at 0·5 and 0·1 respectively. Within the time period investigated, all these pulsatile flows include both forward and backward flows. The unsteady recirculation region and the recirculation points change in size and location with time. For Nw ≤ 1 and St≤ 1·56 x 10?3 the three pulsatile flows have the same simple relation between the instantaneous flow rate and pressure loss (Δp) across the constriction and the pressure gradient in the axial direction (dp/dz) in the fully developed flow region. The phase angles between the flow rate and pressure loss and the pressure gradient are equal to zero. With increasing Nw and St, the phase angle between the flow rate and the dp/dz becomes larger and has its maximum value of 90° at Nw = 50 and St = 3·98. The three pulsatile flows also show different relations between the flow rate and the pressure gradient. The pure sinusoidal flow has the largest maximum pressure gradient and the non-zero mean velocity sinusoidal flow has the smallest. For larger Nw and St the fully developed velocity profiles in the fully developed flow region have a smaller velocity gradient along the radial direction in the central region. The maximum recirculation length increases for Nw ranging from 0 to 4·2, while this length becomes very small at Nw = 50 and St = 3·98. The deceleration tends to enlarge the recirculation region and this effect appears for Nw ≥ 3 and St ≥ 1·43×10?2. Linear relations exist between the flow rate and the instantaneous maximum values of velocity, vorticity and shear stress. 相似文献
4.
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, av, is plotted for different nondimensional parameters such as conduction parameter, , the aspect ratios of the tube, and 0 and the index of power-law fluid, n. 相似文献
5.
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well. 相似文献
6.
孟庆国 《应用数学和力学(英文版)》2004,25(8):894-897
The laminar analytic solutions of velocities and pressure in the central zone of the inlet region of pipe flow are given under the condition of uniform inflow, based on the Navier-Stokes equations of incompressible viscous flow. 相似文献
7.
金均 《应用数学和力学(英文版)》1988,9(8):805-811
In this paper, we have made reaearches on the mathematical models which have three populations of mutual action: We have obtained the sufficient conditions respectively for the systems(*)and(**)for existence and uniqueness of single positive periodic solutions which are globally asymptotically stable. 相似文献
8.
Steady and oscillating axisymmetric tube flows are modelled using a vorticity transport algorithm. The axisymmetric convective –diffusive Navier–Stokes equations are solved using a splitting technique. Axisymmetric ring vortex filaments are introduced on the walls and subsequently convected and diffused throughout the flow field. An axisymmetric equation similar to the Oseen diffusion equation is used to diffuse the ring vortex filaments. Vorticity is reflected from the tube walls using two techniques. Results are presented for the developing Poiseuille flow and for the developed flow in the form of the entrance length and the axial velocity and vorticity profiles. Good agreement is achieved with a finite difference method in the developing region of Poiseuille flow. The developed flow results are compared with the analytical solutions. The developed profiles of velocity and vorticity have errors of less than 0ċ3 per cent for both methods of dealing with reflection of diffusion at the bounding surfaces and similar accuracy is obtained for the velocity profiles in oscillating flow except at the wall. Oscillating flow is produced with a discretized sinusoidal piston motion. Velocity profiles, boundary layer thickness and entrance length are presented for oscillating flow. Good agreement is achieved for low-Womersley-number non-dimensional frequency. At higher values of this parameter, flows are inaccurately simulated, because the number of piston positions used to discretize the piston motion is inversely proportional to the non-dimensional frequency. 相似文献
9.
An unsteady finite volume‐based fractional step algorithm solved on a staggered grid has been developed for computing design sensitivity parameters in two‐dimensional flows. Verification of the numerical code is performed for the case of low Reynolds number, pressure‐driven flow through a straight channel, which has an exact steady‐state solution to the Navier–Stokes equations. Sensitivity of the flow to the channel height, fluid viscosity, and imposed pressure gradient is considered. Three different numerical techniques for computing the design sensitivity parameters: finite difference, complex‐step differentiation, and sensitivity equation method (SEM), are compared in terms of numerical error (relative to the exact solution), computational expense, and ease of implementation. Results indicate that, of all the three methods, complex step is the most accurate and requires the least computational time. In addition, treatment of the boundary conditions in SEM is addressed, within the framework of the present finite volume approach, with special attention given to parameter dependence in the boundary conditions. Error estimation based on the Grid Convergence Index provides a good indication of the exact error in the SEM solutions. An example of application of the use of sensitivity parameters to estimate the propagation of input uncertainty through the numerical simulation is also provided. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Conjugated laminar forced convection with parabolic velocity is studied for flow inside both parallel-plate and circular ducts subjected to a periodically varying inlet temperature. The analysis of this classs of problems lead to a Sturm-Liouville type complex eigenvalue problem for which no known solution is available. In this work, a new methodology is presented for a direct solution of such complex eigenvalue problems in the complex domain using the shooting method along with the Runge-Kutta method. The methodology is applicable for solving both laminar and turbulent flow problems; here we consider only the laminar flow with a parabolic velocity profile. The results clearly show that the slug-flow assumption overestimates the phase lag and the Nusselt number. Some benchmark results are also presented for the eigenquantities in tabular form. 相似文献
11.
This paper presents a numerical study for the unsteady flow of a magnetohydrodynamic (MHD) Sisko fluid in annular pipe. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field. Based on the constitutive relationship of a Sisko fluid, the non‐linear equation governing the flow is first modelled and then numerically solved. The effects of the various parameters especially the power index n, the material parameter of the non‐Newtonian fluid b and the magnetic parameter B on the flow characteristics are explored numerically and presented through several graphs. Moreover, the shear‐thinning and shear‐thickening characteristics of the non‐Newtonian Sisko fluid are investigated and a comparison is also made with the Newtonian fluid. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
13.
The unsteady flow of non-Newtonian fluids through concentric and eccentric cylinders was investigated experimentally. Two experiments were carried out; one was pulsating flow and the other was flow under a constant pressure gradient with the inner cylinder oscillating longitudinally. The flow enhancement was examined and its dependence on the frequency of the oscillations and the eccentricity of the apparatus was determined. 相似文献
14.
非牛顿流体具有复杂的流变特性,揭示该流变特性可以更加合理地指导非牛顿流体在工农业生产中的应用.经典的非牛顿流体本构模型往往形式复杂,仅能应用于某些特定的情况.分数阶导数模型具有参数少和形式简单的特点,己成功地应用于描述非牛顿流体的运动.Hausdorff分形导数作为一个备选的建模方法,相比分数阶导数具有更简单的形式以及更高的计算效率.本文基于Hausdorff分形导数改进现有牛顿黏性模型,提出分形黏壶模型.通过研究分形黏壶在常应变率下表观黏度的变化情况,以及在加、卸载条件下的蠕变及恢复特性,发现分形黏壶模型适合于描述具有黏弹性的非牛顿流体(本文称之为分形流体).结合连续性方程及运动微分方程,推导出分形流体在平行板间层流的基本方程.按是否拖动上板和是否存在水平的压力梯度分为3种工况,分别用数值方法计算这3种工况下流速在板间的分布及其随时间变化的情况.通过分析不同工况下的流速分布,发现水平的压力梯度会改变流速随时间变化的形状,且会推迟流速到达稳定的时间.在水平压力梯度不存在的情况下,不同阶数的分形流体具有相同的流速分布或是演变过程.另外,在水平压力梯度存在的情况下,上板速度不影响不同阶数分形流体间稳定速度的差值. 相似文献
15.
J. L. White 《Rheologica Acta》1981,20(4):381-389
Summary The theory of plastic viscoelastic fluids was developed by the author to represent the rheological behavior of polymer melts and solutions with high loading of small particles. The present paper develops an asymptotic formulation of the general theory which applies to laminar shear flows. The formulation is analogous to Criminale, Ericksen and Filbey's theory for viscoelastic fluids. We apply this to study plane Poiseuille and Couette flow.With 2 tables 相似文献
16.
17.
本文讨论水平圆管中幂率流体的起动问题。用显式和隐式两种格式,我们得到了问题的数值解并从而得到流动建立时间的近似公式。 相似文献
18.
19.
Yongjun JIAN 《应用数学和力学(英文版)》2024,45(11):2037-2054
This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks. The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when both Λ1 and Λ2 tend to zero by comparison with the previous literature. Results demonstrate that an increase in the elasticity parameter Λ1 correlates with a rise in axial velocities, indicating that the relaxation time Λ1 facilitates enhanced squeeze flow. In the case of squeeze film flow in porous layers, low oscillating frequencies exert minimal effects on axial velocities, independent of variations in the viscoelasticity parameter Λ1. However, at higher oscillating frequencies, axial velocities escalate with increasing the viscoelasticity parameter Λ1. Furthermore, the retardation time Λ2 of the viscoelastic fluid shows no significant effect on the axial velocity, regardless of oscillating frequency changes in both pure fluids and porous layers. 相似文献
20.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all. 相似文献