首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayers of tert-butyl carbamate-terminated thiol were formed by adsorption of the molecules onto polycrystalline gold substrate. The adsorbates were studied using techniques as X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and infrared reflection-absorption spectroscopy (IRAS). The results provide the electronic structure, composition, characteristic fingerprint, and orientation of the molecular adsorbate. XPS verified that the thiolate group is chemically bonded to the gold surface and that a complete chemisorption of the molecule occurs. Elemental depth profiling by varying the excitation energy in XPS supports the angle-dependent XPS results. Both techniques showed that the tert-butyl group is oriented away from the gold surface. A nearly parallel orientation of the carbonyl group relative to the gold surface is deduced from the IRAS results. The main molecular axis is estimated to have an average tilt angle of about 38 degrees relative to the gold surface normal on the basis of the NEXAFS results. Cyclic voltammetry indicates a less blocking capability of the adsorbates. Overall, the molecules are oriented in an upright manner with indications of presence of pinholes and/or defects possibly due to steric hindrance of the bulky tert-butyl group. This molecular system is envisioned to be of use for surface-based organic synthesis on gold substrates.  相似文献   

2.
3.
Using two-dimensional surface plasmon resonance measurements, we have observed the formation of traveling waves in the delamination of thin films of polydimethylsilane (PDMS) exposed to methanol. Films were spin-coated on a gold surface and the methanol was added to the top surface. The stress-induced instability caused by the swelling of the PDMS thin film when its edge is pinned to the gold surface leads to wrinkle formation and propagation at the interface. The periodic pattern is thought to be the result of an Asaro-Tiller-Grinfeld (ATG) instability.  相似文献   

4.
We report the development of novel reagents and approaches for generating recyclable biosensors. The use of aqueous media for the formation of protein binding alkylthiolate monolayers on Au surfaces results in accelerated alkylthiolate monolayer formation and improvement in monolayer integrity as visualized by fluorescence microscopy and CV techniques. We have also developed an electrocleaning protocol that is compatible with microfluidics devices, and this technique serves as an on-chip method for cleaning Au substrates both before and after monolayer formation. The techniques for the formation and dissociation of biotinylated SAMs from aqueous solvents reported here may be applied towards the development of Au-based sensor devices and microfluidics chips in the future. A potential use of these devices includes the specific capture and triggered release of target cells, proteins, or small molecules from liquid samples.  相似文献   

5.
A novel method for covalent attachment of ultrathin silica films (thickness <10 nm) to gold substrates is reported. Silica layers were prepared using spin-coating of sol-gel precursor solutions onto gold substrates that were cleaned and oxidized using UV photo-oxidation in an ozone atmosphere. The gold oxide layer resulting from this process acts as a wetting control and adhesive agent for the ultrathin silica layer. Control of silica layer thickness between approximately 6 and 60 nm through modification of precursor solution composition or by repetitive deposition is demonstrated. Films were characterized using infrared spectroscopy, ellipsometry, atomic force microscopy, and cyclic voltammetry. For the standard deposition parameters developed here, films were determined to be 5.5 +/- 0.75 nm thick, and were stable in aqueous solutions ranging in pH from 2 to 10 for at least 30 min. Films contained nanoscopic defects with radii of 相似文献   

6.
Chemical modification of metal organic framework (MOF) nanocrystal colloids was used to endow them with chemical affinity for gold substrates. Modified nanocrystals were then used as building blocks for rapid and selective self-assembly of porous films. Cysteamine (Cys, 2-aminoetanethiol) was chosen as both chemical modulator and functionalizing agent of Zeolite Imidazolate Framework-8 (ZIF-8) MOF nanocrystals. Important parameters such as the impact of the modulator on the range of nanocrystals stability, size, polydispersity, morphology, and crystalline structure were assessed via both, small and wide angle x-ray scattering (SAXS and WAXS). Cysteamine modified ZIF-8 nanocrystals were assembled into films over conductive Au substrates and film growth was followed in-situ with Quartz Crystal Microbalance (QCM). Thiol moieties exposed out of the ZIF-8 surface after cysteamine modification, results in the formation of thiol bonds with Au conductive substrates as shown via Cyclic Voltammetry experiments. The strategy here presented allows for the synthesis of pre-designed building blocks for MOF films on metal surfaces.  相似文献   

7.
8.
Ultrathin films of a cross-linked and chemically distinct conjugated poly(p-phenylene) network via electropolymerization are described. The amphiphilic network precursor was synthesized by incorporating the alkoxy carbazole group (-O(CH2)5Cb) to a poly(p-phenylene) (C6PPPOH) backbone. In order to investigate the combined thin film electrochemical and photophysical properties of poly(p-phenylene)s and polycarbazole conjugated polymers, C6PPPC5Cb was deposited on substrates using the Langmuir Blodgett Kuhn (LBK) method. The monolayer isotherm of the polymer, C6PPPC5Cb, showed a liquid expanded region slightly different from the parent polymer C6PPPOH. Multilayers (up to 30 layers) were transferred to different substrates such as quartz, gold coated LaSFN9 and ITO substrates for analysis. For conversion to a conjugated polymer network (CPN) film, the electroactive carbazole group was electropolymerized using cyclic voltammetry (CV) resulting in polycarbazole linking units. The differences in the film properties and corresponding changes in the electrochemical behavior indicate the importance of film thickness and electron/ion transport process in cross linked network films. From the electrochemical studies, the scan rate was found to have a considerable effect on electropolymerization with higher oxidation and reduction peak values found for the rigid network polymer compared to the uncrosslinked polymers.  相似文献   

9.
Surface forces between gold surfaces were measured in pure water at temperatures in the range of 10-40 °C using an atomic force microscope (AFM). The surfaces were hydrophobized by self-assembly of alkanethiols (C(n)SH) with n=2 and 16 in ethanol solutions. The data were used to determine the changes in excess free energies (ΔG(f)) of the thin water films per unit area by using the Derjaguin approximation [1]. The free energy data were then used to determine the changes in excess film entropy (ΔS(f)) and the excess film enthalpy (ΔH(f)) per unit area. The results show that both ΔS(f) and ΔH(f) decrease with decreasing film thickness, suggesting that the macroscopic hydrophobic interaction involves building some kind of structures in the intervening thin films of water. It was found that |ΔH(f)|>|TΔS(f)|, which is a necessary condition for an attractive force to appear when the enthalpy and entropy changes are both negative. That macroscopic hydrophobic interaction is enthalpically driven is contrary to the hydrophobic interactions at molecular scale. The results obtained in the present work are used to discuss possible origins for the long-range attractions observed between hydrophobic surfaces.  相似文献   

10.
Polymer/Au nanoparticle multilayer ultrathin films are fabricated via hydrogen-bonding interaction by a layer-by-layer technique. The Au nanoparticles surface-modified with pyridine groups of poly(4-vinylpyridine) (PVP) are prepared in dimethyl formamide (DMF). Transmission electron microscopy (TEM) image shows that uniform nanoparticles are dispersed in the PVP chains. Poly(3-thiophene acetic acid) (PTAA) and poly(acrylic acid) (PAA) are utilized to form hydrogen bonds with PVP, respectively. Considering the pH-sensitive dissociation behavior of PTAA and PAA, we investigate the release behavior of the Au-containing multilayers at different pH values in this work. UV-vis spectroscopy and atomic force microscopy (AFM) are employed to monitor the buildup and the release of the multilayers. The results indicate that in the films assembled with gold nanoparticles, the polymers are difficult to be removed from the substrate. The interaction between the gold particles and the neighboring PVP chains is responsible for the phenomenon. Gold particles act as physical cross-link points in the multilayers. Due to the additional interaction caused by the gold nanoparticles in the films except the hydrogen-bonding interaction between PTAA (or PAA) and PVP, the stability of the Au-containing multilayer film is ensured even though the changes in pH values may result in the break of the hydrogen bonds.  相似文献   

11.
Smectites or swelling clay minerals are naturally occurring nanomaterials that can be fully delaminated to elementary clay mineral platelets in dilute aqueous dispersion. This review article gives an overview of the recent progress on how the elementary clay mineral platelets can be reorganized in monolayered or multilayered hybrid nanofilms by layer-by-layer assembly or the Langmuir-Blodgett technique. In the latter case one hybrid layer consists of one layer of elementary clay mineral platelets with a theoretical thickness of 0.96 nm, covered on one side by amphiphilic cations. The organization of the elementary clay mineral platelets and that of the adsorbed amphiphilic cations in the nanofilms has been studied in great detail by ATR-FTIR, UV-Vis and fluorescence spectroscopy, XRD and AFM. The nanofilms carry functional properties, such as chirality, optical nonlinearity and magnetism, which are due to the nature of the amphiphilic cations and to the organization of both the amphiphilic molecules and the elementary clay mineral platelets.  相似文献   

12.
We report here a green and facile one-step method to fabricate nano-network gold films of low roughness via anodization of gold electrodes in an aqueous solution of l-ascorbic acid (AA) or hydroquinone (H2Q) at the oxidation peak potential. The preparation involves the formation of thin gold oxide layer by anodization of gold and its simultaneous and/or subsequent reduction by AA or H2Q. The as-fabricated nano-network gold films show very strong SERS activity in comparison with the substrates prepared by some other electrochemical roughening methods.  相似文献   

13.
This paper focuses on using electrochemical-pH-switchable polymer films as active surfaces for heavy metal waste treatment. Polyacrylic acid (PAA) was grafted at open air and room temperature on gold substrates. As a broad-range chelating material, PAA can capture heavy metal ions at low concentration. The release of the metal ions from the grafted-PAA film was obtained under electro-induced-acidification by applying an anodic potential at the electrode to promote a localized water electrolysis. Such electrochemical-switchable films can be part of a secondary step-treatment after conventional ion exchange process or precipitation for treatment of aqueous effluents in order to reach very low concentration in heavy metal ions without production of secondary effluents.  相似文献   

14.
Surface-enhanced Raman spectroscopy has been used to study chemisorbed thiourea complexes on Cu and Ag electrodes. It was found that the thiourea molecule was bonded via its S atom to the Cu and Ag ad-atoms on the substrates.  相似文献   

15.
Ultrathin films of polythiophene derivatives spread on water were studied by means of synchrotron radiation, using grazing incidence diffraction and (specular) reflectometry to obtain the molecular orientation in the films. The semicrystalline films were anisotropic, showing a strong tendency of orienting the crystalline alpha-axis perpendicularly to the water subphase. The crystalline domains extend essentially through the entire sample thickness, found to be 10-15 nm. A large expansion of the unit cell alpha-parameter was seen upon doping the films in situ. The reflectometry data were well-fitted by a model with a sinusoidal density variation being damped toward the water subphase. This indicates that the crystalline order was most developed at the polymer-air interface and deteriorated down toward the water, possibly due to the hydrophobicity of the alkyl side chains.  相似文献   

16.
This Communication describes a facile route to the preparation of ultrathin gold nanowires using linear chains formed from [(oleylamine)AuCl] complex via aurophilic interaction. The linear chains, with AuI...AuI bonds as the backbone and surrounded by oleylamines, can group together to form bundles of polymeric strands. When the AuI was reduced to Au0 by reacting with Ag nanoparticles in hexane, the polymeric strands functioned as both the source of Au and the template to mediate the nucleation and growth of Au nanowires. Using this method, we were able to produce Au nanowires with an average diameter of approximately 1.8 nm and an aspect ratio of >1000 in high yields (approximately 70%).  相似文献   

17.
Electrostatic interactions drive the adsorption of polycationic single-molecule magnets onto anionic monolayers self-assembled on gold surfaces. Well-isolated magnetic clusters have been deposited and characterized using scanning tunneling microscopy and X-ray photoemission spectroscopy.  相似文献   

18.
Glycosaminoglycan oligosaccharides have been attached to thiol-derivatised gold surfaces, via the formation of mercury-sugar adducts at the non-reducing end, representing a new method of generating versatile glycoconjugates incorporating this class of biologically and medically important carbohydrate.  相似文献   

19.
20.
Surface immobilization of dendrons and dendrimers presents an exciting opportunity for creating a wide variety of functionalized polymeric architectures suitable for the immobilization of biomolecules. Dendritic molecules contain multifunctional groups that can be efficiently modified to control the properties of the resulting polymers. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In this paper, electrochemical methods and scanning probe microscopy were used to explore the immobilization of a dendritic macromolecule (3,5-bis(3,5-dinitrobenzoylamino)benzoic acid) or (D-NO2) onto gold electrodes. D-NO2 adsorbs spontaneously by dipping the metal surface in dendron solution and also via grafting of cystamine covalent attached to gold electrode. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号