首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply the adaptive multilevel finite element techniques (Holst, Baker, and Wang 21 ) to the nonlinear Poisson–Boltzmann equation (PBE) in the context of biomolecules. Fast and accurate numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid (exponential) nonlinearity. However, these adaptive techniques have shown substantial improvement in solution time over conventional uniform‐mesh finite difference methods. One important aspect of the adaptive multilevel finite element method is the robust a posteriori error estimators necessary to drive the adaptive refinement routines. This article discusses the choice of solvent accessibility for a posteriori error estimation of PBE solutions and the implementation of such routines in the “Adaptive Poisson–Boltzmann Solver” (APBS) software package based on the “Manifold Code” (MC) libraries. Results are shown for the application of this method to several biomolecular systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1343–1352, 2000  相似文献   

2.
A hybrid approach for solving the nonlinear Poisson-Boltzmann equation (PBE) is presented. Under this approach, the electrostatic potential is separated into (1) a linear component satisfying the linear PBE and solved using a fast boundary element method and (2) a correction term accounting for nonlinear effects and optionally, the presence of an ion-exclusion layer. Because the correction potential contains no singularities (in particular, it is smooth at charge sites) it can be accurately and efficiently solved using a finite difference method. The motivation for and formulation of such a decomposition are presented together with the numerical method for calculating the linear and correction potentials. For comparison, we also develop an integral equation representation of the solution to the nonlinear PBE. When implemented upon regular lattice grids, the hybrid scheme is found to outperform the integral equation method when treating nonlinear PBE problems. Results are presented for a spherical cavity containing a central charge, where the objective is to compare computed 1D nonlinear PBE solutions against ones obtained with alternate numerical solution methods. This is followed by examination of the electrostatic properties of nucleic acid structures.  相似文献   

3.
We present an algorithm for reducing the computational work involved in coupled‐cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations.  相似文献   

4.
We present a robust and efficient numerical method for solution of the nonlinear Poisson-Boltzmann equation arising in molecular biophysics. The equation is discretized with the box method, and solution of the discrete equations is accomplished with a global inexact-Newton method, combined with linear multilevel techniques we have described in an article appearing previously in this journal. A detailed analysis of the resulting method is presented, with comparisons to other methods that have been proposed in the literature, including the classical nonlinear multigrid method, the nonlinear conjugate gradient method, and nonlinear relaxation methods such as successive overrelaxation. Both theoretical and numerical evidence suggests that this method will converge in the case of molecules for which many of the existing methods will not. In addition, for problems which the other methods are able to solve, numerical experiments show that the new method is substantially more efficient, and the superiority of this method grows with the problem size. The method is easy to implement once a linear multilevel solver is available and can also easily be used in conjunction with linear methods other than multigrid. © 1995 by John Wiley & Sons, Inc.  相似文献   

5.
Slater‐type orbitals are applied to represent the numerically obtained Kohn–Sham eigenfunction of free atom. The algorithm evaluating the nonlinear expansion coefficients of this approximation is described. Standard iterative solution of Kohn–Sham equation to obtain the nonlinear expansion coefficients is avoided and replaced by the projection method. First, the eigenfunction is obtained in the B‐spline space based on the Galerkin formulation of the finite element method. Then, based on the density functional theory, the conditions are formulated, which leads to the set of nonlinear equations. The proposed algorithm is general and can be applied for any atomic Kohn–Sham eigenfunction. As an examplary application of the proposed algorithm, the set of nonlinear equations is derived for occupied states of N, Al, Ga, and In atoms. The expansion coefficients, obtained for these atoms, are evaluated numerically by Newton procedure and listed in the tables. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
The Poisson–Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This article presents a matched interface and boundary (MIB)‐based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique‐based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second‐order convergence, that is, the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet‐to‐Neumann mapping technique that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 Å — whereas it usually takes other traditional PB solvers 0.25 Å to reach similar level of reliability. This work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein–solvent solvation energy calculations and analysis of salt effects on protein–protein binding energies, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

7.
This article is concerned with the robust and efficient numerical simulation of case II diffusion, which constitutes an important regime of solvent diffusion into glassy polymers. Even in the one‐dimensional case considered here, the numerical simulation of case II diffusion is made difficult by the extreme nonlinearities and coupling in the governing model equations due to a nonlinear flux law needed to produce sharp solvent fronts, a concentration‐dependent relaxation time of the polymer used to model the glass‐rubber transition, and coupling between the diffusion and deformation phenomena. Having an efficient and accurate solution to such equations is central to advancing a clear understanding of the meaning of such models. The difficulties due to coupling and nonlinearities are highlighted by the consideration of a specific, normalized, one‐dimensional case II diffusion model laid out in a general framework of balance laws. Issues such as the stiffness of the spatially discrete differential algebraic equations obtained from the finite element discretization of the governing equations and their bearing on the choice of time‐stepping schemes are discussed. The key requirements of numerical schemes, namely, robustness and efficiency, are addressed by the use of an implicit, adaptive, second‐order backward differentiation formula with error control for time discretization. Error control is used to maximize the step size to satisfy a target error and the radius of convergence requirements while nonlinear algebraic equations are solved at each time step. An example of an initial boundary value problem is solved numerically to show that the chosen model reproduces case II behavior and to validate that the stated objectives for the numerical simulation are met. Finally, the features and numerical implementation of this model are compared with those of a closely related case II diffusion model due to Wu and Peppas. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2091–2108, 2003  相似文献   

8.
The sum‐over‐states (SOS) polarizabilities are calculated within approximate mean‐field electron theories such as the Hartree–Fock approximation and density functional models using the eigenvalues and orbitals obtained from the self‐consistent solution of the single‐particle equations. The SOS polarizabilities are then compared with those calculated using the finite‐field (FF) method. Three widely used mean‐field models are as follows: (1) the Hartree–Fock (HF) method, (2) the three parameter hybrid generalized gradient approximation (GGA) (B3LYP), and (3) the parameter‐free generalized gradient approximation due to Perdew–Burke–Ernzerhof (PBE). The comparison is carried out for polarizabilities of 142 molecules calculated using the 6‐311++G(d,p) basis set at the geometries optimized at the B3LYP/6‐311G** level. The results show that the SOS method almost always overestimates the FF polarizabilities in the PBE and B3LYP models. This trend is reversed in the HF method. A few exceptions to these trends are found. The mean absolute errors (MAE) in the screened (FF) and unscreened (SOS) polarizability are 0.78, 1.87, and 3.44 Å3 for the HF, B3LYP, and PBE‐GGA methods, respectively. Finally, a simple scheme is devised to obtain FF quality polarizability from the SOS polarizability. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
Analysis of diffusion-controlled adsorption and surface tension in one-dimensional planar coordinates with a finite diffusion length and a nonlinear isotherm, such as the Langmuir or Frumkin isotherm, requires numerical solution of the governing equations. This paper presents three numerical methods for solving this problem. First, the often-used integral (I) method with the trapezoidal rule approximation is improved by implementing a technique for error estimation and choosing time-step sizes adaptively. Next, an improved finite difference (FD) method and a new finite element (FE) method are developed. Both methods incorporate (a). an algorithm for generating spatially stretched grids and (b). a predictor-corrector method with adaptive time integration. The analytical solution of the problem for a linear dynamic isotherm (Henry isotherm) is used to validate the numerical solutions. Solutions for the Langmuir and Frumkin isotherms obtained using the I, FD, and FE methods are compared with regard to accuracy and efficiency. The results show that to attain the same accuracy, the FE method is the most efficient of the three methods used.  相似文献   

10.
With advances in computer architecture and software, Newton methods are becoming not only feasible for large-scale nonlinear optimization problems, but also reliable, fast and efficient. Truncated Newton methods, in particular, are emerging as a versatile subclass. In this article we present a truncated Newton algorithm specifically developed for potential energy minimization. The method is globally convergent with local quadratic convergence. Its key ingredients are: (1) approximation of the Newton direction far away from local minima, (2) solution of the Newton equation iteratively by the linear Conjugate Gradient method, and (3) preconditioning of the Newton equation by the analytic second-derivative components of the “local” chemical interactions: bond length, bond angle and torsional potentials. Relaxation of the required accuracy of the Newton search direction diverts the minimization search away from regions where the function is nonconvex and towards physically interesting regions. The preconditioning strategy significantly accelerates the iterative solution for the Newton search direction, and therefore reduces the computation time for each iteration. With algorithmic variations, the truncated Newton method can be formulated so that storage and computational requirements are comparable to those of the nonlinear Conjugate Gradient method. As the convergence rate of nonlinear Conjugate Gradient methods is linear and performance less predictable, the application of the truncated Newton code to potential energy functions is promising.  相似文献   

11.
A Krylov subspace accelerated inexact Newton (KAIN) method for solving linear and nonlinear equations is described, and its relationship to the popular direct inversion in the iterative subspace method [DIIS; Pulay, P., Chem Phys Lett 1980, 393, 73] is analyzed. The two methods are compared with application to simple test equations and the location of the minimum energy crossing point of potential energy surfaces. KAIN is no more complicated to implement than DIIS, but can accommodate a wider variety of preconditioning and performs substantially better with poor preconditioning. With perfect preconditioning, KAIN is shown to be very similar to DIIS. For these reasons, KAIN is recommended as a replacement for DIIS.  相似文献   

12.
The nonlinear Poisson-Boltzmann equation (PBE) has been successfully used for the prediction of numerous electrostatic properties of highly charged biopolyelectrolytes immersed in aqueous salt solutions. While numerous numerical solvers for the 3D PBE have been developed, the formulation of the outer boundary treatments used in these methods has only been loosely addressed, especially in the nonlinear case. The de facto standard in current nonlinear PBE implementations is to either set the potential at the outer boundaries to zero or estimate it using the (linear) Debye-Hückel (DH) approximation. However, an assessment of how these outer boundary treatments affect the overall solution accuracy does not appear to have been previously made. As will be demonstrated here, both approximations can, under certain conditions, produce completely erroneous estimates of the potential and energy salt dependencies. A related concern for calculations carried out on grids of finite extent (e.g., all current finite difference and finite element implementations) is the contribution to the energy and salt dependence from the exterior region outside the computational grid. This too is shown to be significant, especially at low salt concentration where essentially all of the contributions to the excess osmotic pressure and ion stress energies originate from this exterior region. In this paper the authors introduce a new outer boundary treatment that is valid for both the linear and nonlinear PBE. The authors also formulate energy corrections to account for contributions from outside the computational domain. Finally, the authors also consider the effects of general ion exclusion layers upon biomolecular electrostatics. It is shown that while these layers tend to increase the surface electrostatic potential, under physiological salt conditions and high net charges their effect on the excess osmotic pressure term, which is a measure of the salt dependence of the total electrostatic free energy, is weak. To facilitate presentation and allow very fine resolutions and/or large computational domains to be considered, attention is restricted to the 1D spherically symmetric nonlinear PBE. Though geometrically limited, the modeling principles nevertheless extend to general PBE solvers as discussed in the Appendix. The 1D model can also be used to benchmark and validate the salt effect prediction capabilities of existing PBE solvers.  相似文献   

13.
14.
We present a model and an associated numerical scheme to simulate complex electrokinetic processes in channels with nonuniform cross‐sectional area. We develop a quasi‐1D model based on local cross‐sectional area averaging of the equations describing unsteady, multispecies, electromigration‐diffusion transport. Our approach uses techniques of lubrication theory to approximate electrokinetic flows in channels with arbitrary variations in cross‐section; and we include chemical equilibrium calculations for weak electrolytes, Taylor–Aris type dispersion due of nonuniform bulk flow, and the effects of ionic strength on species mobility and on acid–base equilibrium constants. To solve the quasi‐1D governing equations, we provide a dissipative finite volume scheme that adds numerical dissipation at selective locations to ensure both unconditional stability and high accuracy. We couple the numerical scheme with a novel adaptive grid refinement algorithm that further improves the accuracy of simulations by minimizing numerical dissipation. We benchmark our numerical scheme with existing numerical schemes by simulating nonlinear electrokinetic problems, including ITP and electromigration dispersion in CZE. Simulation results show that our approach yields fast, stable, and high‐resolution solutions using an order of magnitude less grid points compared to the existing dissipative schemes. To highlight our model's capabilities, we demonstrate simulations that predict increase in detection sensitivity of ITP in converging cross‐sectional area channels. We also show that our simulations of ITP in variable cross‐sectional area channels have very good quantitative agreement with published experimental data.  相似文献   

15.
16.
The Poisson‐Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson‐Boltzmann equation. We expose the flux directly through a first‐order system form of the equation. Using this formulation, we propose a system that yields a tractable least‐squares finite element formulation and establish theory to support this approach. The least‐squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities - obtained with both linear and nonlinear Poisson-Boltzmann equation - for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers.  相似文献   

18.
A parallel finite element simulator, ichannel, is developed for ion transport through three‐dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson–Nernst–Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and IV curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α‐Hemolysin (α‐HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size‐modified PNP (SMPNP) model on VDAC and α‐HL. It is shown that the size effects in SMPNP can effectively lead to reduced current in the channel, and the results are closer to BD simulation results. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006  相似文献   

20.
The approximation properties of Lobatto polynomials are analyzed and then applied to approximate the atomic Kohn–Sham eigenfunction. In the first part of this article the approximation algorithm based on the Galerkin finite element method is derived. To obtain the approximation of the function, based on the presented algorithm, the linear set of equations must be solved. The matrix of the equation set is very sparse and its elements can be evaluated analytically. In the second part of this article, the algorithm is applied to evaluate adaptive polynomial approximation of selected Kohn–Sham eigenstates of indium (In) atom. The proposed r‐adaptive algorithm evaluates the minimum number of subintervals needed to represent the eigenfunction with required accuracy. Based on the r‐adaptive algorithm, the approximations of 4d, 5s 5p In eigenfunctions were calculated. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号