首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an experimental and modeling study of the oxidation of benzene. The low‐temperature oxidation was studied in a continuous flow stirred tank reactor with carbon‐containing products analyzed by gas chromatography. The following experimental conditions were used: 923 K, 1 atm, fuel equivalence ratios from 1.9 to 3.6, concentrations of benzene from 4 to 4.5%, and residence times ranging from 1 to 10 s corresponding to benzene conversion yields from 6 to 45%. The ignition delays of benzene–oxygen–argon mixtures with fuel equivalence ratios from 1 to 3 were measured behind shock waves. Reflected shock waves permitted to obtain temperatures from 1230 to 1970 K and pressures from 6.5 to 9.5 atm. A detailed mechanism has been proposed and allows us to reproduce satisfactorily our experimental results, as well as some data of the literature obtained in other conditions, such as in a plug flow reactor or in a laminar premixed flame. The main reaction paths have been determined for the four series of measurements by sensitivity and flux analyses. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 503–524, 2003  相似文献   

2.
Shock tube ignition delay times have been measured for 3-pentanone at a reflected shock pressure of 1 atm (±2%), in the temperature range 1250-1850 K, at equivalence ratios of 0.5-2.0 for O(2) mixtures in argon with fuel concentrations varying from 0.875 to 1.3125%. Laminar flame speeds have also been measured at an initial pressure of 1 atm over an equivalence ratio range. Complementary to previous studies [Pichon S., Black, G., Chaumeix, N., Yahyaoui, M., Simmie, J. M., Curran, H. J., Donohue, R. Combust. Flame, 2009, 156, 494-504; Serinyel, Z.; Black, G.; Curran, H. J.; Simmie, J. M. Combustion Sci. Tech., 2010, 182, 574-587], laminar flame speeds of 2-butanone have also been measured, and relative reactivities of these ketones have been compared and discussed. A chemical kinetic submechanism describing the oxidation of 3-pentanone has been developed and detailed in this paper; rate constants for unimolecular fuel decomposition reactions have been treated for falloff in pressure with nine-parameter fits using the Troe Formulism. Both compounds treated in this work may be used as fuel tracers, thus further ignition delay time measurements have been carried out by adding 3-pentanone to n-heptane in order to test the effect of the blend on ignition delay timing. It was found that the autoignition characteristics of n-heptane remained unaffected in the presence of 15% 3-pentanone in the fuel, consistent with results obtained using acetone and 2-butanone [Pichon S., Black, G., Chaumeix, N., Yahyaoui, M., Simmie, J. M., Curran, H. J., Donohue, R. Combust. Flame, 2009, 156, 494-504; Serinyel, Z.; Black, G.; Curran, H. J.; Simmie, J. M. Combustion Sci. Tech., 2010, 182, 574-587].  相似文献   

3.
Cyclopentane and methylcyclopentane oxidation was investigated in a jet-stirred reactor at atmospheric pressure, over temperatures ranging from 900 to 1250 K, for fuel-lean, stoichiometric, and fuel-rich mixtures at a constant residence time of 70 ms. The initial mole fraction of both fuels was kept constant at 1000 ppm. The reactants were highly diluted by a flow of nitrogen to ensure thermal homogeneity. Samples of the reacting mixture were analyzed online and off-line by Fourier transform infrared spectroscopy and gas chromatography. A detailed kinetic mechanism consisting of 590 species involved in 3469 reactions was developed, and simulation results were compared to these new experimental data and previously reported ignition delays. Reaction pathways analysis as well as sensitivity analyses were performed to get insights into the differences observed during the oxidation process of cyclopentane and methylcyclopentane.  相似文献   

4.
Ethylene oxidation and pyrolysis was modeled using a comprehensive kinetic reaction mechanism. This mechanism is an updated version of one developed earlier. It includes the most recent findings concerning the kinetics of the reactions involved in the oxidation of ethylene. The proposed mechanism was tested against ethylene oxidation experimental data (molecular species concentration profiles) obtained in jet stirred reactors (1–10 atm, 880–1253 K), ignition delay times measured in shock tubes (0.2–12 atm, 1058–2200 K) and ethylene pyrolysis data in shock tube (2–6 atm, 1700–2200 K). The general prediction of concentration profiles of minor species formed during ethylene oxidation is improved in the present model by using more accurate kinetic data for several reactions (principally: HO2 + HO2 → H2O2 + O2, C2H4 + OH → C2H3 + H2O, C2H2 + OH → Products, C2H3 → C2H2 + H).  相似文献   

5.
6.
This article describes an experimental and modeling study of the oxidation of isobutene. The low-temperature oxidation was studied in a continuous-flow stirred-tank reactor operated at constant temperature (from 833 to 913 K) and pressure (1 atm), with fuel equivalence ratios from 3 to 6 and space times ranging from 1 to 10 s corresponding to isobutene conversion yields from 1 to 50%. The main carbon containing products were analyzed by gas chromatography. The ignition delays of isobutene-oxygen-argon mixtures with fuel equivalence ratios from 1 to 3 were measured behind shock waves. Reflected shock waves permitted to obtain temperatures from 1230 to 1930 K and pressures from 9.5 to 10.5 atm. A mechanism has been proposed to reproduce the profiles obtained for the reactants consumption and the products formation during the slow oxidation and to compute the ignition delays in the shock tube. Simulations were performed using CHEMKIN II. A correct agreement between the simulated values and the experimental data has been obtained in both apparatuses. The main reaction paths have been determined for both series of measurements by a sensitivity and rate of production analysis. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 629–640, 1998  相似文献   

7.
This paper describes an experimental and modeling study of the oxidation of the three isomers of xylene (ortho‐, meta‐, and para‐xylenes). For each compound, ignition delay times of hydrocarbon–oxygen–argon mixtures with fuel equivalence ratios from 0.5 to 2 were measured behind reflected shock waves for temperatures from 1330 to 1800 K and pressures from 6.7 to 9 bar. The results show a similar reactivity for the three isomers. A detailed kinetic mechanism has been proposed, which reproduces our experimental results, as well as some literature data obtained in a plug flow reactor at 1155 K showing a clear difference of reactivity between the three isomers of xylene. The main reaction paths have been determined by sensitivity and flux analyses and have allowed the differences of reactivity to be explained. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 284–302, 2006  相似文献   

8.
针对高含氯垃圾气化-燃烧工艺中焦油的氧化裂解过程,利用均相管流反应器配合傅里叶红外光谱仪,以C_6H_6为焦油模型化合物,对比研究了氯参与前后,裂解产物组成和氧化完全程度随温度和当量比的变化,探索了氯对C_6H_6氧化裂解过程的影响机制。结果表明,低温下氯对C_6H_6的氧化有明显的激发作用,但由于氯对OH的消耗,对裂解产物进一步转化为完全氧化产物CO_2又存在抑制作用。此外,在高温低当量比条件下氯对聚合反应也有促进作用。因此,在工程应用中,高含氯垃圾气化产物的燃烧可适应更低的温度,但应避免高温低当量比反应环境的形成以避免聚合产物。此外,还应控制垃圾原料中的氯元素比例,以保障氧化反应的充分进行。  相似文献   

9.
Ignition delays of cyclohexene–oxygen–argon mixtures were measured behind shock. Mixtures contained 1 or 2% of hydrocarbons for equivalence ratios ranging from 0.5 to 2. Reflected shock waves permitted to obtain temperatures from 1050 to 1520 K and pressures from 7.7 to 9.1 atm. The experimental results exhibit an Arrhenius variation vs. temperature. A detailed mechanism of the combustion of cyclohexene has been written in the line of the mechanism developed previously for the reaction of C3? C4 unsaturated hydrocarbons (propyne, allene, 1,3‐butadiene, butynes); it is based on recent kinetic data values published in the literature and is consistent with thermochemistry. This mechanism has been validated by comparing the results of the simulations to the experimental results obtained for ignition delays. The main reaction pathways have been derived from flow rate and sensitivity analyses for the different temperature areas studied. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 273–285, 2003  相似文献   

10.
This paper describes an experimental and modeling study of the oxidation of toluene. The low‐temperature oxidation was studied in a continuous flow stirred tank reactor with carbon‐containing products analyzed by gas chromatography under the following experimental conditions: temperature from 873 to 923 K, 1 bar, fuel equivalence ratios from 0.45 to 0.91, concentrations of toluene from 1.4 to 1.7%, and residence times ranging from 2 to 13 s corresponding to toluene conversion from 5 to 85%. The ignition delays of toluene–oxygen–argon mixtures with fuel equivalence ratios from 0.5 to 3 were measured behind reflected shock waves for temperatures from 1305 to 1795 K and at a pressure of 8.7 ± 0.7 bar. A detailed kinetic mechanism has been proposed to reproduce our experimental results, as well as some literature data obtained in other shock tubes and in a plug flow reactor. The main reaction paths have been determined by sensitivity and flux analyses. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 25–49, 2005  相似文献   

11.
Thermal cracking of kerosene for producing ethylene and propylene has been studied in an experimental setup. A set of experiments were designed using Response Surface Design (Box Behnken) method. In these experiments, the coil outlet temperature (COT), residence time and steam ratio varied from 795 °C, 0.13 s and 0.6 to 838 °C, 0.27 s and 1.0, respectively. Obtained maximum ethylene and propylene yield in these experiments were 32 and 16.9 wt.%, respectively. In next step of studies, we tried to develop an applicable kinetic model to predict yield distribution of products of the kerosene thermal cracking. Therefore, a reaction mechanism is generated on the basis of major reactions classes in the pyrolysis and feed compounds using some simplification assumptions in the model. This semi-mechanistic kinetic model contains 172 reactions, 22 molecular and 29 radical species. A sensitivity analysis was done on kinetic model and controlling reactions identified. An objective function was defined and used to tune the model with experimental data. Finally, the calculated model results were compared with the experimental data. Scatter diagrams showed good agreement between model and experimental data.  相似文献   

12.
Although the combustion chemistry of aliphatic hydrocarbons has been extensively documented, the oxidation of cyclic hydrocarbons has been studied to a much lesser extent. To provide a deeper understanding of the combustion chemistry of naphthenes, the oxidation of methylcyclohexane was studied in a series of high-temperature shock tube experiments. Ignition delay times for a series of mixtures, of varying methylcyclohexane/oxygen equivalence ratios (phi=0.5, 1.0, 2.0), were measured over reflected shock temperatures of 1200-2100 K and reflected shock pressures of 1.0, 2.0, and 4.0 atm. A detailed chemical kinetic mechanism has been assembled to simulate the shock tube results and flow reactor experiments, with good agreement observed.  相似文献   

13.
14.
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Rules for reaction rate constants are developed for the low-temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Because cyclohexane produces only one type of cyclohexyl radical, much of the low-temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical with O2 through five-, six-, and seven-membered-ring transition states. The direct elimination of cyclohexene and HO2 from RO2 is included in the treatment using a modified rate constant of Cavallotti et al. (Proc. Combust. Inst. 2007, 31, 201). Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data, are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments cannot be simulated according to the current understanding of low-temperature chemistry. Possible "alternative" H-atom isomerizations leading to different products from the parent O2QOOH radical were included in the low-temperature chemical kinetic mechanism and were found to play a significant role.  相似文献   

15.
New experimental results were obtained for the mutual sensitization of the oxidation of NO and methane in a fused silica jet‐stirred reactor operating at 105 Pa, over the temperature range 800–1150 K. The effect of the addition of sulfur dioxide was studied. Probe sampling followed by online FTIR analyses and off‐line GC‐TCD/FID analyses allowed the measurement of concentration profiles for the reactants, stable intermediates, and final products. A detailed chemical kinetic modeling of the present experiments was performed. An overall reasonable agreement between the present data and modeling was obtained. According to the present modeling, the mutual sensitization of the oxidation of methane and NO proceeds via the NO to NO2 conversion by HO2 and CH3O2. The conversion of NO to NO2 by CH3O2 is more important at low temperatures (800 K) than at higher temperatures (850–900 K) where the production of NO2 is mostly due to the reaction of NO with HO2. The NO to NO2 conversion is favored by the production of the HO2 and CH3O2 radicals yielded from the oxidation of the fuel. The production of OH resulting from the oxidation of NO accelerates the oxidation of the fuel: NO + HO2 → OH+ NO2 followed by OH + CH4→ CH3. In the lower temperature range of this study, the reaction further proceeds via CH3 + O2→ CH3O2; CH3O2+ NO → CH3O + NO2. At higher temperatures, the production of CH3O involves NO2: CH3+ NO2→ CH3O. This sequence of reactions is followed by CH3O → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2 → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2. The data and the modeling show that unexpectedly, SO2 has no measurable effect on the kinetics of the mutual sensitization of the oxidation of NO and methane in the present conditions, whereas it frequently acts as an inhibitor in combustion. This result was rationalized via a detailed kinetic analysis indicating that the inhibiting effect of SO2 via the sequence of reactions SO2+H → HOSO, HOSO+O2 → SO2+HO2, equivalent to H+O2?HO2, is balanced by the reaction promoting step NO+HO2 → NO2+OH. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 406–413, 2005  相似文献   

16.
The effect of NO and SO2 on the oxidation of a CO? H2 mixture was studied in a jet‐stirred reactor at atmospheric pressure and for various equivalence ratios (0.1, 1, and 2) and initial concentrations of NO and SO2 (0–5000 ppm). The experiments were performed at fixed residence time and variable temperature ranging from 800 to 1400 K. Additional experiments were conducted in a laminar flow reactor on the effect of SO2 on CO? H2 oxidation in the same temperature range for stoichiometric and reducing conditions. It was demonstrated that in fuel‐lean conditions, the addition of NO increases the oxidation of the CO? H2 mixture below 1000 K and has no significant effect at higher temperatures, whereas the addition of SO2 has a small inhibiting effect. Under stoichiometric and fuel‐rich conditions, both NO and SO2 inhibit the oxidation of the CO? H2 mixture. The results show that a CO? H2 mixture has a limited NO reduction potential in the investigated temperature range and rule out a significant conversion of HNO to NH through reactions like HNO + CO ?? NH + CO2 or HNO + H2 ?? NH + H2O. The chain terminating effect of SO2 under stoichiometric and reducing conditions was found to be much more pronounced than previously reported under flow reactor conditions and the present results support a high rate constant for the H + SO2 + M ?? HOSO + M reaction. The reactor experiments were used to validate a comprehensive kinetic reaction mechanism also used to simulate the reduction of NO by natural gas blends and pure C1 to C4 hydrocarbons. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 564–575, 2003  相似文献   

17.
Nine mixtures of acetylene and oxygen diluted in argon were studied behind reflected shock waves at temperatures of 1150–2132 K and pressures of 0.9–1.9 atm. Initial compositions were varied from very fuel‐lean to moderately fuel‐rich, covering equivalence ratios of 0.0625–1.66. Two more mixtures with added ethylene were used to boost the sensitivity to reactions of vinyl oxidation. The progress of reaction was monitored by laser absorption of CO molecules. The collected experimental data were subjected to extensive detailed chemical kinetics analysis. The initial kinetic model was assembled based on recent literature data and then optimized using the solution mapping technique. The analysis was extended to include recent experimental observations of Hidaka and co‐workers (Combust Flame 1996, 107, 401). The derived model reproduces closely both sets of experimental data, the result obtained by modifying nine rate coefficients and three enthalpies of formation of intermediate species. The identified parameter tradeoffs and justification for the changes are discussed. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 391–414, 2003  相似文献   

18.
A kinetic model of the laser-induced breakdown spectroscopy (LIBS) plume of lead in argon has been developed to gain an understanding of the physical and chemical factors controlling the LIBS signature. This model includes processes involving ion chemistry, excitation, ionization, and other processes affecting the concentrations of argon and lead atoms (in 9 different electronic states) and their ions. A total of 15 chemical species and 90 reactions are included in the model. Experimental measurements of the temporal dependence of a number of lead emission lines in the LIBS plume of metallic lead have been made in argon and air. The modeling results are compared with these observations and with previous modeling of LIBS of lead in air.  相似文献   

19.
Ignition delay times of acetonitrile (CH3CN) in mixtures containing acetonitrile and oxygen diluted in argon were studied behind reflected shock waves. The temperature range covered was 1420–1750 K at overall concentrations behind the reflected shock wave ranging from 2 to 4×10−5 mol/cm3. Over this temperature and concentration range the ignition delay times varied by approximately one order of magnitude, ranging from ca. 100 μs to slightly above 1 ms. From a total of some 70 tests the following correlation for the ignition delay times was derived: tign=9.77×10−12 exp(41.7×103/RT)×{[CH3CN]0.12[O2]−0.76[Ar]0.34} s, where concentrations are expressed in units of mol/cm3 and R is expressed in units of cal/(K mol). The ignition delay times were modeled by a reaction scheme containing 36 species and 111 elementary reactions. Good agreement between measured and calculated ignition delay times was obtained. A least-squares analysis of 60 computed ignition delay times from six different groups of initial conditions gave the following temperature and concentration dependence: E=46.2×103 cal/mol, β=0.43, β=−1.18, and βAr=0.18. The ignition process is initiated by H-atom ejection from acetonitrile. The addition of oxygen atoms to the system from the dissociation of molecular oxygen and from the reaction CH3CN+O2 → HO2·+CH2CN·is negligible. In view of the relatively high concentration of methyl radicals obtained in the reaction CH3CN+H → CH3+HCN, the branching step CH3+O2 → CH3O+O plays a more important role than the parallel step H+O2→ OH+O. A discussion of the mechanism in view of the sensitivity analysis is presented. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 839–849, 1997  相似文献   

20.
Ignition delay times of 1‐pentene–oxygen–argon mixtures have been measured behind shock wave, the onset of ignition being detected by OH radical emission. Mixtures contained 1 or 2% of hydrocarbon for equivalence ratios ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1130 to 1620 K and pressures from 7.3 to 9.5 atm to be obtained. A detailed mechanism of combustion of 1‐pentene has been automatically generated using EXGAS software. This mechanism has been validated by comparing the results of the simulations to the experimental ignition delay times. The main reaction pathways have been derived from flow rate and sensitivity analyses at different temperatures. Comparisons with 1‐butene and 1‐hexene in the same conditions show that 1‐pentene has a higher reactivity which seems to be due to its decomposition to give ethyl radicals, which rapidly yields very reactive hydrogen atoms, while the decomposition of 1‐butene and 1‐hexene leads to less reactive methyl radicals. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 451–463, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号