首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

2.
Herein we report a successful dispersion polymerization of 2‐hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1‐dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2‐hydroxyethyl methacrylate) was effectively emulsified in carbon dioxide with the amphiphilic diblock copolymer surfactant, and the successful stabilization of the polymerization simultaneously gave spherical particles in the submicrometer range with relatively narrow particle size distributions. The initial concentrations of HEMA and the stabilizer and the pressure had substantial effects on the size of the colloidal particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3783–3790, 2000  相似文献   

3.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(2,3‐dihydroxypropyl methacrylate) or poly(ethylene glycol) methacrylate (PEGMA) and hydrophobic polyisobutylene chains. This conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB‐IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four per chain, was copolymerized with 2,3‐dihydroxypropyl methacrylate or poly(ethylene glycol) methacrylate by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 11–60 mol % of DHPMA or 10–12 mol % of PEGMA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4074–4081, 2007  相似文献   

4.
The diffusion of water into cylinders of polyHEMA and copolymers of HEMA with THFMA, BMA and CHMA were studied over a range of copolymer compositions. The diffusion of water into the polymers was found to follow a Fickian, or case I mechanism. The diffusion coefficients of water were determined from mass measurements and NMR imaging studies. They were found to vary from 1.7 ± 0.2 x 10−11 m2 s−1 for polyHEMA at 37°C to lower values for the copolymers. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 52-58 wt% for polyHEMA to lower values for the copolymers.  相似文献   

5.
Telechelic copolymers of styrene and different N‐substituted‐maleimides (SMIs) with a molecular weight of 2000–8000 g/mol were synthesized using the starved‐feed‐reactor technique and were nearly bifunctional when the monomer feed had a high styrene concentration. The COOH‐terminated rigid SMI blocks were polycondensated with OH‐terminated poly(tetrahydrofuran) (PTHF) blocks, with a molecular weight of 250–1000 g/mol, which are the flexible parts in the generated homogeneous multiblock copolymer. The entanglement density, which is closely related to the toughness of materials, increased in these flexible SMI copolymers (νe = 5.2 · 1025 m−3) compared to the unflexibilized ones (νe = 2.4 · 1025 m−3). The glass transition temperature of these flexibilized, single‐phase multiblock copolymers was still high enough to qualify them as engineering plastics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3550–3557, 2000  相似文献   

6.
Pulsed laser polymerization experiments have been performed on the bulk polymerization of dimethyl itaconate over the temperature range 20–50 °C. The activation energy and frequency factor were calculated as 24.9 kJ/mol−1 and 2.15 × 105 L/mol−1s−1, respectively. The activation energy is comparable with the methacrylate series of monomers. The frequency factor is relatively small and reflects steric hindrance in the transition state caused by the bulky 1,1, disubstitution in the monomer (and consequently the radical). The Mark–Houwink–Kuhn–Sakurada constants were also determined for poly(dimethyl itaconate) in tetrahydrofuran, these are reported as 46 × 10−5 dL/g (K) and 0.51 (α). The influence of penultimate units (γ‐substituents) on homopropagation reactions is discussed particularly for polymerizations leading to significant 1,3 interactions in the resultant polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2192–2200, 2000  相似文献   

7.
The water transport in 2‐hydroxyethyl methacrylate copolymer (HEMA copolymer) irradiated by γ rays in air is investigated. The sorption data of deionized water transport in HEMA copolymer subjected to various dosages of γ‐ray irradiation are in excellent agreement with the theoretical model that accounts for case I, case II, and anomalous transport. The diffusion coefficient for case I and the velocity for case II satisfy the Arrhenius equation for all dosage levels. The transport process is exothermic and the equilibrium–swelling ratio satisfies the van't Hoff plot. The studies of the glass transition temperature of the irradiated HEMA copolymer, the pH value of deionized water after irradiation treatment, and the quantitative determination of water structures in the HEMA copolymer hydrogel are helpful in analyzing the irradiation effect on water transport in the HEMA copolymer. The effect of irradiation on the optical properties of the HEMA copolymer is also analyzed. The transmittance of a standard specimen with saturated water is lower than that before the water treatment because of the creation of holes. However, because of the formation of color centers, the color of the copolymer becomes yellow to brown and the UV cutoff wavelength of the HEMA copolymer shifts to the longer wavelength side with increasing irradiation dosage. Some of the color centers can be annihilated after water treatment. The buckled pattern on the outer surface is observed when the HEMA copolymer irradiated by a γ ray in air is immersed in the water. This phenomenon is explained by the inhomogeneous distribution of crosslinking density. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 659–671, 2000  相似文献   

8.
The partly fluorinated monomers, 2,2,2‐trifluoroethyl methacrylate (3FM), 2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate (8FM), and 1,1,2,2‐tetrahydroperfluorodecyl methacrylate (17FM) have been used in the preparation of block copolymers with methyl methacrylate (MMA), 2‐methoxyethyl acrylate (MEA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization. A kinetic study of the 3FM homopolymerization initiated with ethyl bromoisobutyrate and Cu(I)Br/N‐(n‐propyl)‐2‐pyridylmethanimine reveals a living/controlled polymerization in the range 80–110 °C, with apparent rate constants of 1.6 · 10−4 s−1 to 2.9 · 10−4 s−1. Various 3FM containing block copolymers with MMA are prepared by sequential monomer addition or from a PMMA macroinitiator in all cases with controlled characteristics. Block copolymers of 3FM and PEGMA resulted in block copolymers with PDI < 1.22, whereas block copolymers from 3FM and MEA have less controlled characteristics. The block copolymers based on MMA with 8FM and 17 FM have PDI's < 1.30. The glass transition temperatures of the block copolymers are dominated by the majority monomer, as the sequential monomer addition results in too short pure blocks to induce observable microphase separation. The thermal stability of the fluorinated poly((meth)acrylate)s in inert atmosphere is less than that of corresponding nonfluorinated poly((meth)acrylate)s. The presence of fluorinated blocks significantly increases the advancing water contact angle of thin films compared to films of the nonfluorinated poly((meth)acrylate)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8097–8111, 2008  相似文献   

9.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

10.
When poly(N‐vinyl pyrrolidone‐co‐vinyl acetate) (PVP‐co‐PVAc) containing amide and ester groups were complexed with silver salts to form silver polymer electrolyte membranes, their separation performance of propylene/propane mixtures showed the high selectivity of propylene over propane of 55 and the high mixed gas permeance of 12 GPU (1 GPU = 1.0 × 10?6 cm3(STP) cm?2 s?1 cmHg?1). The separation performance strongly depends on the composition of the copolymer: the higher concentration of PVP in the copolymer, the better separation performance was achieved. These results suggest that the amide group is more effective in facilitated propylene transport than the ester group, primarily due to the stronger interaction of the silver ions with the amide than the ester oxygens, as demonstrated by FT‐IR and FT‐Raman spectroscopies. In‐situ FT‐IR spectra upon propylene sorption also demonstrate that the interaction strength of the silver ions with the ligands is arranged: amide > C?C > ester. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2263–2269, 2007  相似文献   

11.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

12.
Block and random copolymers of poly(3‐hexylthiophene) and poly[3‐(2‐(6‐carboxyhexyl)methyl)thiophene] with side‐chain carboxylic functionality ((P3HT‐b‐P3COOH) and (P3HT‐r‐P3COOH) were developed by Grignard Metathesis (GRIM) polymerization. The carboxylic functionality was introduced in the side chain via the oxazoline route. Both the block and random polythiophene copolymers were complexed with pyridine functionalized perylene bisimide to obtain supramolecular block and random polymer complexes. The complex formation in both systems was confirmed by 1H NMR, WXRD and SAXS studies. An expansion of d spacing upon complex formation was observed in both the block and random copolymer, which could be traced by WXRD. Hole and electron mobilities measured for the supramolecular complexes indicated values which were higher by an order of magnitude for the supramolecular block complex (μh ≈ 2.9 × 10−4 cm2/Vs; μe ≈ 3.1 × 10−6 cm2/Vs) as compared to the random (μh ≈ 1.4 × 10−5 cm2/Vs; μe ≈ 4.7 × 10−7 cm2/Vs) copolymer. These results are indicative of the higher degree of disorder prevailing in the films of random copolymer system compared to the block copolymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1574–1583  相似文献   

13.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

14.
15.
The temperature‐dependent desorption behavior of surfactants in linear low‐density polyethylene (LLDPE) blend films was studied with Fourier transform infrared spectroscopy at 25, 40, and 50 °C. The LLDPE/low‐density polyethylene blend was 70/30. Three different specimens (labeled II, III, and IV) were prepared with various compositions of the surfactant, sorbitan palmitate (SPAN‐40), and the migration controller, poly(ethylene acrylic acid) (EAA). The calculated diffusion coefficients of SPAN‐40 in specimens II, III, and IV at 25, 40, and 50 °C varied from 9.6 × 10−12 to 17.4 × 10−12 cm2/s, from 5.5 × 10−12 to 11.0 × 10−12 cm2/s, and from 3.1 × 10−12 to 5.8 × 10−12 cm2/s, respectively. In addition, the activation energies of specimens II, III, and IV measured between 25 and 50 °C were 18.74, 19.42, and 20.14, respectively. Hence, the desorption rate of the surfactant increased with the temperature and decreased with an addition of EAA, but the activation energy increased with EAA. The diffusion kinetics, analyzed with a plot of the integrated intensity ratio as a function of time, log(It/I) versus log t, at 25, 40, and 50 °C obeyed Fickian diffusion behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 218–227, 2001  相似文献   

16.
The blending between poly(methyl methacrylate) (PMMA) and ferroelectric (vinylidene fluoride‐trifluorethylene) [P(VDF‐TrFE)] copolymer chains has been investigated by Fourier transform infrared (FTIR) spectroscopy over the full range of composition, for the copolymer with 50 mol % of trifluorethylene [TrFE]. The FTIR spectra revealed an absorption band at 1643 cm−1, characteristic of the blend and absent in the individual constituents. We attributed this band to the interaction of the carbonyl group of the PMMA side chains with the disordered helical chains present in the amorphous region of the P(VDF‐TrFE). We investigated the consequences of adding PMMA onto the formation of the all trans conformation of the copolymer chains and we demonstrated that the effects of thermal heating on the spectra are relevant only for the samples where the ferroelectric semicrystalline phase is present. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 34–40, 2000  相似文献   

17.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

18.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

19.
Raman study of flexure stressed poly(methyl methacrylate) (PMMA) plates at the frequency range of libration mode (80 cm−1), boson peak (14 cm−1), and quasi‐elastic light scattering (QLS) (below 20 cm−1) is presented. The reversible changes in the vicinity of the Rayleigh line were attributed to partial disturbance of the midrange order due to stress‐induced redistribution of random fluctuations of orientation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1133–1136, 2000  相似文献   

20.
《Soft Materials》2013,11(2-3):195-212
Abstract

Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1‐vinyl‐2‐ pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma‐rays from 60Co sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range ?10 to +10°C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was referred to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with FVP=0.19 has been estimated to be gH2O/gPolymer=0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve‐fit of the early‐stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5×10?11 m2 s?1 and 4.5×10?11 m2 s?1, depending on the polymer composition, the cross‐link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was ≈24 kJ mol?1. Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号