共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dieter Seebach Magnus Rueping PerI. Arvidsson Thierry Kimmerlin Peter Micuch Christian Noti Daniel Langenegger Daniel Hoyer 《Helvetica chimica acta》2001,84(11):3503-3510
N‐Acyl‐β2/β3‐dipeptide‐amide somatostatin analogs, 5 – 8 , with β2‐HTrp‐β3‐HLys ('natural' sequence) and β2‐HLys‐β3‐HTrp (retro‐sequence) have been synthesized (in solution). Depending on their relative configurations and on the nature of the terminal N‐acyl and terminal C‐amino group, the linear β‐dipeptide derivatives have affinities for the human receptor hsst 4, ranging from 250 to >10000 nanomolar (Fig. 3). Also, N‐Ac‐tetrapeptide amides 9 and 10 , which contain one α‐ and three β‐amino acid residues (N‐β‐α‐β‐β‐C), have been prepared (solid‐phase synthesis), with the natural (Phe, Trp, Lys, Thr) and the retro‐sequence (Thr, Lys, Trp, Phe) of side chains and with two different configurations, each, of the two central amino acid residues. The novel ‘mixed', linear α/β‐peptides have affinities for the hsst 4 receptor ranging from 23 to >10000 nanomolar (Fig. 4), and, like ‘pure' β‐peptides, they are completely stable to a series of proteolytic enzymes. Thus, the peptidic turn of the cyclic tetradecapeptide somatostatin (Fig. 1) can be mimicked by simple linear di‐ and tetrapeptides. The tendency of β‐dipeptides for forming hydrogen‐bonded rings is confirmed by calculations at the B3LYP/6‐31G(d,p) level (Fig. 2). The reported results open new avenues for the design of low‐molecular‐weight peptidic drugs. 相似文献
3.
Luis G. Hernández‐Vázquez Marco A. Leyva Alejandro J. Metta‐Magaña Jaime Escalante 《Helvetica chimica acta》2012,95(11):2218-2230
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented. 相似文献
4.
《化学:亚洲杂志》2017,12(12):1326-1337
A copper(I)‐mediated denitrogenative reaction has been successfully developed for the preparation of cyclic tetrapeptides. The key reactive intermediate, ketenimine, triggers intramolecular cyclization through attack of the terminal amine group to generate an internal β‐amino acid with an amidine linkage. The chemistry developed herein provides a new synthetic route for the preparation of cyclic α3β‐tetrapeptide analogues that contain important biological properties and results in rich structural information being obtained for conformational studies. With the success of this copper(I)‐catalyzed macrocyclization, two histone deacetylase inhibitor analogues consisting of the cyclic α3β‐tetrapeptide framework have been successfully synthesized. 相似文献
5.
Stephan Bachmann Bernhard Jaun Wilfred F. vanGunsteren Dongqi Wang 《Helvetica chimica acta》2010,93(10):1870-1881
The importance of β‐peptides lies in their ability to mimic the conformational behavior of α‐peptides, even with a much shorter chain length, and in their resistance to proteases. To investigate the effect of substitution of β‐peptides on their dominant fold, we have carried out a molecular‐dynamics (MD) simulation study of two tetrapeptides, Ac‐(2R,3S)‐β2,3hVal(αMe)‐(2S)‐β2hPhe‐(R)‐β3hLys‐(2R,3S)‐β2,3‐Ala(αMe)‐NH2, differing in the substitution at the Cα of Phe2 (pepF with F, and pepH with H). Three simulations, unrestrained (UNRES), using 3J‐coupling biasing with local elevation in combination with either instantaneous (INS) or time‐averaging (AVE) NOE distance restraining, were carried out for each peptide. In the unrestrained simulations, we find three (pepF) and two (pepH) NOE distance bound violations of maximally 0.22 nm that involve the terminal residues. The restrained simulations match both the NOE distance bounds and 3J‐values derived from experiment. The fluorinated peptide shows a slightly larger conformational variability than the non‐fluorinated one. 相似文献
6.
The H2O‐soluble cyclic β3‐tripeptide cyclo(β‐Asp‐β3‐hVal‐β3‐hLys) ( 4 ) was obtained by on‐resin cyclization of the side‐chain‐anchored β‐peptide 3 (Scheme). In aqueous solution, 4 adopts a structure with uniformly oriented amide bonds and all side chains in lateral positions (Fig. 3). 相似文献
7.
Thierry Sifferlen Magnus Rueping Karl Gademann Bernhard Jaun Dieter Seebach 《Helvetica chimica acta》1999,82(12):2067-2093
To test the effect of NH−C=S groups (Scheme 1) on the stability of β-peptide secondary structures, we have synthesized three β-thiohexapeptide analogues of H-(β-HVal-β-HAla-β-HLeu)2-OH ( 1 ) with one, two, and three C=S groups in the N-terminal positions (cf. 2 – 4 and model in Fig. 1). The first C=S group was introduced selectively by treatment with Lawesson reagent of Boc-β-dipeptide esters ( 6 and 8 ). A series of fragment-coupling steps (with reagents as for the corresponding sulfur-free building blocks) and another thionation reaction led to the title compounds with a C=S group in residues 1, 1, and 3, as well as 1, 2, and 3 of the β-hexapeptide (Schemes 2 and 3). The sulfur derivatives, especially those with three C=S groups, were much more soluble in organic media than the sulfur-free analogues (>1000-fold in CHCl3; Table 1). The UV and CD spectra (in CHCl3, MeOH, and H2O) of the new compounds were recorded and compared with those of the parent β-hexapeptide 1 (Figs. 2 – 4); they indicate the presence of more than one secondary structure under the various conditions. Most striking is a pronounced exciton splitting (Δλ ca. 20 nm, amplitude up to +121000) of the ππ*C=S band near 270 nm with the β-trithiohexapeptide (with and without terminal protecting groups), and strong, so-called `primary solvent effects', in the CD spectra. The CD spectrum of the β-dithiohexapeptide 3 undergoes drastic changes upon irradiation with 266-nm laser light of a MeOH solution (Fig. 5). The NMR structure in CD3OH of the unprotected β-trithiohexapeptide 4 was determined to be an (M)-314-helix (Fig. 7), very similar to that of the non-thionated analogue (cf. 1 ). NMR and mass spectra of the β-hexapeptides with C=S and with C=O groups are compared (Figs. 6 and 8). 相似文献
8.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses. 相似文献
9.
Oliver Flögel Giulio Casi Donald Hilvert Dieter Seebach 《Helvetica chimica acta》2007,90(9):1651-1666
The title compounds, 4 and 7 , have been prepared from the corresponding α‐amino acid derivative selenocystine ( 1 ) by the following sequence of steps: cleavage of the Se? Se bond with NaBH4, p‐methoxybenzyl (PMB) protection of the SeH group, Fmoc or Boc protection at the N‐atom and Arndt–Eistert homologation (Schemes 1 and 2). A β3‐heptapeptide 8 with an N‐terminal β3‐hSec(PMB) residue was synthesized on Rink amide AM resin and deprotected (‘in air’) to give the corresponding diselenide 9 , which, in turn, was coupled with a β3‐tetrapeptide thiol ester 10 by a seleno‐ligation. The product β3‐undecapeptide was identified as its diselenide and its mixed selenosulfide with thiophenol (Scheme 3). The differences between α‐ and β‐Sec derivatives are discussed. 相似文献
10.
Synthesis of 1‐(α‐Aminobenzyl)‐2‐naphthol Derivatives,their Structure in Crystal and in Solution 下载免费PDF全文
К. Е. Metlushka D. N. Sadkova L. N. Shaimardanova A. I. Tufatullin V. F. Zheltukhin О. N. Kataeva V. А. Alfonsov 《Journal of heterocyclic chemistry》2015,52(1):80-85
The series of tautomeric 1,3‐diarylnaphthoxazines (the Betti base precursors) was obtained by the interaction of 2‐naphthols and 1,3,5‐trisaryl‐2,4‐diazapenta‐1,4‐dienes. Their structure has been established in solid state and solution. 相似文献
11.
Dieter Seebach 《Helvetica chimica acta》2011,94(1):1-17
Fmoc‐β2hSer(tBu)‐OH was converted to Fmoc‐β2hSec(PMB)‐OH in five steps. To avoid elimination of HSeR, the selenyl group was introduced in the second last step (Fmoc‐β2hSer(Ts)‐OAll→Fmoc‐β2hSec(PMB)‐OAll). In a similar way, the N‐Boc‐protected compound was prepared. With the β2hSe‐derivatives, 21 β2‐amino‐acid building blocks with proteinogenic side chains are now available for peptide synthesis. 相似文献
12.
Dieter Seebach RaveendraI. Mathad Thierry Kimmerlin YogeshR. Mahajan Pascal Bindschdler Magnus Rueping Bernhard Jaun Christian Hilty Touraj Etezady‐Esfarjani 《Helvetica chimica acta》2005,88(7):1969-1982
The NMR‐solution structure of an α‐heptapeptide with a central Aib residue was investigated in order to verify that, in contrast to β‐peptides, short α‐peptides do not form a helical structures in MeOH. Although the central Aib residue was found to induce a bend in the experimentally determined structure, no secondary structure typical for longer α‐peptides or proteins was found. A β2/β3‐nonapeptide with polar, positively charged side chains was subjected to NMR analysis in MeOH and H2O. Whereas, in MeOH, it folds into a 10/12‐helix very similar to the structure determined for a corresponding β2/β3‐nonapeptide with only aliphatic side chains, no dominant conformation could be determined in H2O. Finally, the NMR analysis of a β3‐icosapeptide containing the side chains of all 20 proteinogenic amino acids in MeOH is described. It revealed that this 20mer folds into a 314‐helix over its whole length forming six full turns, the longest 314‐helix found so far. Together, our findings confirm that, in contrast to α‐peptides, β‐peptides not only form helices with just six residues, but also form helices that are longer than helical sections usually observed in proteins or natural peptides. The higher helix‐forming propensity of long β‐peptides is attributed to the conformation‐stabilizing effect of the staggered ethane sections in β‐peptides which outweighs the detrimental effect of the increasing macrodipole. 相似文献
13.
Dr. Olaf Hartmann Prof. Dr. Markus Kalesse 《Angewandte Chemie (International ed. in English)》2014,53(28):7335-7338
Here we describe the synthesis of β‐lipomycin, a secondary metabolite isolated from the fermentation broth of Corallococcus coralloides. The synthesis relies on the structural assignment made by a statistical method, the so‐called profile hidden Markov model. Using this protocol, not only the configuration of the secondary alcohol, but also of the adjacent methyl branch could be deduced. The synthesis therefore not only provides access to this natural product but also confirms the validity of this approach for configurational assignment at methyl branches of modular polyketides. 相似文献
14.
A number of cyclo‐β‐tripeptides and their linear precursors were subjected to primary biological evaluation for cancer‐cell growth inhibition (one‐dose, three‐cell essay), and the five most active ones were then tested in the anti‐tumor screen of the National Cancer Institute (Bethesda, USA) with 60 human cancer cell lines. Growth inhibition values GI50 in the one‐digit micromolar, and in one case in the nanomolar range were obtained. The effects show selectivities for certain types of cancer cells and for certain cell lines within these types; the screen includes leukemia, non‐small‐cell lung, colon, and central‐nervous‐system (CNS) cancer, melanoma, ovarian, renal, prostate, and breast cancer cell lines. The synthesis and full characterization of two new cyclo‐β‐peptides, (β3‐HSer(OBn))3 ( 11 ) and (β3‐HMet)3 ( 12 ) are described. Other cyclo‐ β‐peptides included in this investigation are (β‐Asp(Bn))3 ( 13 ), (β‐HGlu(Bn))3 ( 14 ), and (β‐HAla)3 ( 16 ), compounds which had been previously prepared by us. Strongest activities were measured with the cyclo‐β‐peptides bearing benzyl‐ester or benzyl‐ether groups in the side chains. The cytotoxic activity of the compounds included in this investigation is much lower (LC50>100 μM ) than their antiproliferative activity (GI50). 相似文献
15.
(E)‐,(Z)‐Parallel Preparative Methods for Stereodefined β,β‐Diaryl‐ and α,β‐Diaryl‐α,β‐unsaturated Esters: Application to the Stereocomplementary Concise Synthesis of Zimelidine 下载免费PDF全文
Yuichiro Ashida Yuka Sato Takeyuki Suzuki Kanako Ueno Ken‐ichiro Kai Dr. Hidefumi Nakatsuji Prof. Dr. Yoo Tanabe 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(15):5934-5945
Parallel and practical methods for the preparation of both (E)‐ and (Z)‐β‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 1 and (E)‐ and (Z)‐α‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 2 are described. These methods involve accessible, robust, stereocomplementary N‐methylimidazole (NMI)‐mediated enol tosylations (14 examples, 70–99 % yield), as well as stereoretentive Suzuki–Miyaura cross‐couplings (36 examples, 64–99 % yield). The highlighted feature of the present protocol is the use of parallel and stereocomplementary approaches to obtain highly (E)‐ and (Z)‐pure products 1 and 2 by utilizing sequential enol tosylations and cross‐coupling reactions. An expeditious and parallel synthesis of (E)‐ and (Z)‐zimelidine ( 3 ), which is a highly representative selective serotonin reuptake inhibitor (SSRI), was performed by utilizing the present methods. 相似文献
16.
17.
James Gardiner Raveendra I. Mathad Berhard Jaun Jürg V. Schreiber Oliver Flögel Dieter Seebach 《Helvetica chimica acta》2009,92(12):2698-2721
β3‐Peptides consisting of six, seven, and ten homologated proteinogenic amino acid residues have been attached to an α‐heptapeptide (all d‐ amino acid residues; 4 ), to a hexaethylene glycol chain (PEGylation; 5c ), and to dipicolinic acid (DPA derivative 6 ), respectively. The conjugation of the β‐peptides with the second component was carried out through the N‐termini in all three cases. According to NMR analysis (CD3OH solutions), the (M)‐314‐helical structure of the β‐peptidic segments was unscathed in all three chimeric compounds (Figs. 2, 4, and 5). The α‐peptidic section of the α/β‐peptide was unstructured, and so was the oligoethylene glycol chain in the PEGylated compound. Thus, neither does the appendage influence the β‐peptidic secondary structure, nor does the latter cause any order in the attached oligomers to be observed by this method of analysis. A similar conclusion may be drawn from CD spectra (Figs. 1, 3, and 5). These results bode well for the development of delivery systems involving β‐peptides. 相似文献
18.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)2(η1‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)2(η2‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction. 相似文献
19.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(30):8916-8920
A series of phosphines featuring a persistent radical were synthesized in two steps by condensation of dialkyl‐/diarylchlorophosphines with stable cyclic (alkyl)(amino)carbenes (cAACs) followed by one‐electron reduction of the corresponding cationic intermediates. Structural, spectroscopic, and computational data indicate that the spin density in these phosphines is mainly localized on the original carbene carbon from the cAAC fragment; thus, it remains in the α‐position with respect to the central phosphorus atom. The potential of these α‐radical phosphines to serve as spin‐labeled ligands is demonstrated through the preparation of several AuI derivatives, which were also structurally characterized by single‐crystal X‐ray diffraction. 相似文献