首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rigorous study of the explicit Lax–Friedrichs scheme for its application to one‐dimensional shallow water flows is presented. The deficiencies of this method are identified and the way to overcome them are presented. It is compared to the explicit first order upwind scheme and to the explicit second order Lax–Wendroff scheme by means of the simulation of several test cases with exact solution. All three schemes in their best balanced version are applied to the simulation of a real river flood wave leading to very satisfactory results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
When solute transport is advection‐dominated, the advection‐dispersion equation approximates to a hyperbolic‐type partial differential equation, and finite difference and finite element numerical approximation methods become prone to artificial oscillations. The upwind scheme serves to correct these responses to produce a more realistic solution. The upwind scheme is reviewed and then applied to the advection‐dispersion equation with local operators for the first‐order upwinding numerical approximation scheme. The traditional explicit and implicit schemes, as well as the Crank‐Nicolson scheme, are developed and analyzed for numerical stability to form a comparison base. Two new numerical approximation schemes are then proposed, namely, upwind–Crank‐Nicolson scheme, where only for the advection term is applied, and weighted upwind‐downwind scheme. These newly developed schemes are analyzed for numerical stability and compared to the traditional schemes. It was found that an upwind–Crank‐Nicolson scheme is appropriate if the Crank‐Nicolson scheme is only applied to the advection term of the advection‐dispersion equation. Furthermore, the proposed explicit weighted upwind‐downwind finite difference numerical scheme is an improvement on the traditional explicit first‐order upwind scheme, whereas the implicit weighted first‐order upwind‐downwind finite difference numerical scheme is stable under all assumptions when the appropriate weighting factor (θ) is assigned.  相似文献   

3.
A composite finite volume method (FVM) is developed on unstructured triangular meshes and tested for the two‐dimensional free‐surface flow equations. The methodology is based on the theory of the remainder effect of finite difference schemes and the property that the numerical dissipation and dispersion of the schemes are compensated by each other in a composite scheme. The composite FVM is formed by global composition of several Lax–Wendroff‐type steps followed by a diffusive Lax–Friedrich‐type step, which filters out the oscillations around shocks typical for the Lax–Wendroff scheme. To test the efficiency and reliability of the present method, five typical problems of discontinuous solutions of two‐dimensional shallow water are solved. The numerical results show that the proposed method, which needs no use of a limiter function, is easy to implement, is accurate, robust and is highly stable. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Composite schemes are formed by global composition of several Lax–Wendroff steps followed by a diffusive Lax–Friedrichs or WENO step, which filters out the oscillations around shocks typical for the Lax–Wendroff scheme. These schemes are applied to the shallow water equations in two dimensions. The Lax–Friedrichs composite is also formulated for a trapezoidal mesh, which is necessary in several example problems. The suitability of the composite schemes for the shallow water equations is demonstrated on several examples, including the circular dam break problem, the shock focusing problem and supercritical channel flow problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we assess several interface schemes for stationary complex boundary flows under the direct‐forcing immersed boundary‐lattice Boltzmann methods (IB‐LBM) based on a split‐forcing lattice Boltzmann equation (LBE). Our strategy is to couple various interface schemes, which were adopted in the previous direct‐forcing immersed boundary methods (IBM), with the split‐forcing LBE, which enables us to directly use the direct‐forcing concept in the lattice Boltzmann calculation algorithm with a second‐order accuracy without involving the Navier–Stokes equation. In this study, we investigate not only common diffuse interface schemes but also a sharp interface scheme. For the diffuse interface scheme, we consider explicit and implicit interface schemes. In the calculation of velocity interpolation and force distribution, we use the 2‐ and 4‐point discrete delta functions, which give the second‐order approximation. For the sharp interface scheme, we deal with the exterior sharp interface scheme, where we impose the force density on exterior (solid) nodes nearest to the boundary. All tested schemes show a second‐order overall accuracy when the simulation results of the Taylor–Green decaying vortex are compared with the analytical solutions. It is also confirmed that for stationary complex boundary flows, the sharper the interface scheme, the more accurate the results are. In the simulation of flows past a circular cylinder, the results from each interface scheme are comparable to those from other corresponding numerical schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper reports a comparative study on the stability limits of nine finite difference schemes to discretize the one‐dimensional unsteady convection–diffusion equation. The tested schemes are: (i) fourth‐order compact; (ii) fifth‐order upwind; (iii) fourth‐order central differences; (iv) third‐order upwind; (v) second‐order central differences; and (vi) first‐order upwind. These schemes were used together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii) Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In addition, the dispersive and dissipative characteristics of the schemes were compared with the exact solution for the pure advection equation, or simple first or second derivatives, and numerical experiments confirm the Fourier analysis. The results show that fourth‐order Runge–Kutta, together with central schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution. Overall the fourth‐order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A pressure correction method coupled with the volume of fluid (VOF) method is developed to simulate two‐phase flows. A volume fraction function is introduced in the VOF method and is governed by an advection equation. A modified monotone upwind scheme for a conservation law (modified MUSCL) is used to solve the solution of the advection equation. To keep the initial sharpness of an interface, a slope modification scheme is introduced. The continuum surface tension (CST) model is used to calculate the surface tension force. Three schemes, central‐upwind, Parker–Youngs, and mixed schemes, are introduced to compute the interface normal vector and the gradient of the volume fraction function. Moreover, a height function technique is applied to compute the local curvature of the interface. Several basic test problems are performed to check the order of accuracy of the present numerical schemes for computing the interface normal vector and the gradient of the volume fraction function. Three physical problems, two‐dimensional broken dam problem, static drop, and spurious currents, and three‐dimensional rising bubble, are performed to demonstrate the efficiency and accuracy of the pressure correction method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A series of numerical schemes: first‐order upstream, Lax–Friedrichs; second‐order upstream, central difference, Lax–Wendroff, Beam–Warming, Fromm; third‐order QUICK, QUICKEST and high resolution flux‐corrected transport and total variation diminishing (TVD) methods are compared for one‐dimensional convection–diffusion problems. Numerical results show that the modified TVD Lax–Friedrichs method is the most competent method for convectively dominated problems with a steep spatial gradient of the variables. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We develop a class of fifth‐order methods to solve linear acoustics and/or aeroacoustics. Based on local Hermite polynomials, we investigate three competing strategies for solving hyperbolic linear problems with a fifth‐order accuracy. A one‐dimensional (1D) analysis in the Fourier series makes it possible to classify these possibilities. Then, numerical computations based on the 1D scalar advection equation support two possibilities in order to update the discrete variable and its first and second derivatives: the first one uses a procedure similar to that of Cauchy–Kovaleskaya (the ‘Δ‐P5 scheme’); the second one relies on a semi‐discrete form and evolves in time the discrete unknowns by using a five‐stage Runge–Kutta method (the ‘RGK‐P5 scheme’). Although the RGK‐P5 scheme shares the same local spatial interpolator with the Δ‐P5 scheme, it is algebraically simpler. However, it is shown numerically that its loss of compactness reduces its domain of stability. Both schemes are then extended to bi‐dimensional acoustics and aeroacoustics. Following the methodology validated in (J. Comput. Phys. 2005; 210 :133–170; J. Comput. Phys. 2006; 217 :530–562), we build an algorithm in three stages in order to optimize the procedure of discretization. In the ‘reconstruction stage’, we define a fifth‐order local spatial interpolator based on an upwind stencil. In the ‘decomposition stage’, we decompose the time derivatives into simple wave contributions. In the ‘evolution stage’, we use these fluctuations to update either by a Cauchy–Kovaleskaya procedure or by a five‐stage Runge–Kutta algorithm, the discrete variable and its derivatives. In this way, depending on the configuration of the ‘evolution stage’, two fifth‐order upwind Hermitian schemes are constructed. The effectiveness and the exactitude of both schemes are checked by their applications to several 2D problems in acoustics and aeroacoustics. In this aim, we compare the computational cost and the computation memory requirement for each solution. The RGK‐P5 appears as the best compromise between simplicity and accuracy, while the Δ‐P5 scheme is more accurate and less CPU time consuming, despite a greater algebraic complexity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensional scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of the second‐order finite volume scheme for this equation, paying special attention to the reduction of the method to first order as a particular case. The explicit first and second order in space upwind finite volume schemes are analysed to provide an understanding of the stability constraints, making emphasis in the numerical conservation and in the preservation of the positivity property of the solution when necessary in the presence of source terms. The time step requirements for stability are defined at the cell edges, related with the traditional Courant–Friedrichs–Lewy (CFL) condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first‐order and second‐order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth‐order Runge–Kutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two‐dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side‐by‐side. Results of these simulations were extensively compared with the previous numerical data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, first‐order upwind implicit schemes are considered. The traditional tridiagonal scheme is rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for unsteady transcritical flows. On the other hand, the origin of the instabilities associated to the use of upwind implicit methods for shock propagations is identified and a new stability condition for non‐linear problems is proposed. This modification produces a robust, simple and accurate upwind semi‐explicit scheme suitable for discontinuous flows with high Courant–Friedrichs–Lewy (CFL) numbers. The discretization at the boundaries is based on the condition of global mass conservation thus enabling a fully conservative solution for all kind of boundary conditions. The performance of the proposed technique will be shown in the solution of the inviscid Burgers' equation, in an ideal dambreak test case, in some steady open channel flow test cases with analytical solution and in a realistic flood routing problem, where stable and accurate solutions will be presented using CFL values up to 100. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents numerical methods for solving turbulent and two‐phase transonic flow problems. The Navier–Stokes equations are solved using cell‐vertex Lax–Wendroff method with artificial dissipation or cell‐centred upwind method with Roe's Riemann solver and linear reconstruction. Due to a big difference of time scales in two‐phase flow of condensing steam a fractional step method is used. Test cases including 2D condensing flow in a nozzle and one‐phase transonic flow in a turbine cascade with transition to turbulence are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is the initial investigation into a new Lagrangian cell‐centered hydrodynamic scheme that is motivated by the desire for an algorithm that resists mesh imprinting and has reduced complexity. Key attributes of the new approach include multidimensional construction, the use of flux‐corrected transport (FCT) to achieve second order accuracy, automatic determination of the mesh motion through vertex fluxes, and vorticity control. Toward this end, vorticity preserving Lax–Wendroff (VPLW) type schemes for the two‐dimensional acoustic equations were analyzed and then implemented in a FCT algorithm. Here, mesh imprinting takes the form of anisotropic dispersion relationships. If the stencil for the LW methods is limited to nine points, four free parameters exist. Two parameters were fixed by insisting that no spurious vorticity be created. Dispersion analysis was used to understand how the remaining two parameters could be chosen to increase isotropy. This led to new VPLW schemes that suffer less mesh imprinting than the rotated Richtmyer method. A multidimensional, vorticity preserving FCT implementation was then sought using the most promising VPLW scheme to address the problem of spurious extrema. A well‐behaved first order scheme and a new flux limiter were devised in the process. The flux limiter is unique in that it acts on temporal changes and does not place a priori bounds on the solution. Numerical results have demonstrated that the vorticity preserving FCT scheme has comparable performance to an unsplit MUSCL‐H algorithm at high Courant numbers but with reduced mesh imprinting and superior symmetry preservation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The effectiveness and usefulness of further enhancing the shock resolution of a second‐order accurate scheme for open‐channel flows by using an adaptive grid is investigated. The flux‐difference‐splitting (FDS) scheme based on the Lax–Wendroff numerical flux is implemented on a fixed as well as on a self‐adjusting grid for this purpose. The grid‐adjusting procedure, developed by Harten and Hyman, adjusts the grid by averaging the local characteristic velocities with respect to the signal amplitude in such a way that a shock always lies on a mesh point. This enables a scheme capable of perfectly resolving a stationary shock to capture a shock that moves from mesh point to mesh point. The Roe's approximate Jacobian is used for conservation and consistency, while theoretically sound treatment for satisfying entropy inequality conditions ensures physically realistic solutions. Details about inclusion of source terms, often left out of analyses for the homogeneous part of governing equations, are also explained. The numerical results for some exacting problems are compared with analytical as well as experimental results for examining improvements in resolution of discontinuities by the adaptive grid. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号