首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spherical‐harmonics expansion method is proposed to solve the quantum time‐evolution equations for density matrices numerically in momentum space. This method facilitates efficient real‐time simulations of quantum electron dynamics in continuum states through extension of our previous formalism developed for discrete states. Numerical accuracy and efficiency are demonstrated through two examples: (i) multiphoton ionization of a one‐electron atom in intense laser field, and (ii) real‐time dynamics of plasma oscillations in electron liquids. In case (i), coupled dynamics of density matrices for bound and continuum states reveals an enhancement of multiphoton ionization over the Keldysh approximation through resonant intermediate states. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
3.
A class of polymeric compounds containing boron–boron triple bonds stabilized by N‐heterocyclic biscarbenes is proposed. Since a triply bonded B2 is related to its third excited state, the predicted macromolecule would be composed by several units of an electronically excited first‐row homonuclear dimer. Moreover, it is shown that the replacement of biscarbene with N2 or CO as spacers could change the bonding profile of the boron–boron units to a cumulene‐like structure. Based on these results, different types of diboryne polymers are proposed, which could lead to an unprecedented set of boron materials with distinct physical properties. The novel diboryne macromolecules could be synthesized by the reaction of Janus‐type biscarbenes with tetrabromodiborane, B2Br4, and sodium naphthalenide, [Na(C10H8)], similarly to Braunschweig’s work on the room temperature stable boron–boron triple bond compounds (Science, 2012 , 336, 1420).  相似文献   

4.
The spectroscopic constants and absorption spectra of neutral and charged diatomic molecules of group 11 and 14 elements formulated as [M2]+/0/? (M = Cu, Ag, Au), and [E2]+/0/? (E = C, Si, Ge, Sn, Pb) have been calculated at the PBE0/Def2‐QZVPP level of theory. The electronic and bonding properties of the diatomics have been analyzed by natural bond orbital analysis approach and topology analysis by the atoms in molecules method. Particular emphasis was given on the absorption spectra of the diatomic species, which were simulated by time‐dependent density functional theory calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP density functional. The simulated absorption spectra of the [M2]+/0/? (M = Cu, Ag, Au) and [E2]+/0/? (E = C, Si, Ge, Sn, Pb) species are in close resemblance with the experimentally observed spectra whenever available. The neutral M2 and E2 diatomics strongly absorb in the ultraviolet region, given rise to UVC, UVA and in a few cases UVB absorptions. In a few cases, weak absorbion bands also occur in the visible region. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
In this study, the results of structural parameters, electronic structure, and thermodynamic properties of the ZrxY1–xN solid solutions are presented. The effect of zirconium composition on lattice constant, and bulk modulus shows nonlinear dependence on concentration. Deviations of the lattice constant from Vegard's law and deviations of the bulk modulus from linear concentration dependence were found. Our findings indicate that the ZrxY1–xN solid solutions are metallic for x = 0.25, 0.5, 0.75. The calculated excess mixing enthalpy is positive over the entire zirconium composition range. The positive mixing enthalpies for ZrxY1–xN alloys indicate the existence of miscibility gaps and spinodal decompositions. The effect of temperature on the volume, bulk modulus, Debye temperature, and the heat capacity for ZrxY1–xN alloys were analyzed using the quasi‐harmonic Debye model. Results show that the heat capacity is slightly sensitive to composition as temperature increases. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Increasing the length of N‐heteroacenes or their analogues is highly desirable because such materials could have great potential applications in organic electronics. In this report, the large π‐conjugated N‐heteroquinone 6,10,17,21‐tetra‐((triisopropylsilyl)ethynyl)‐5,7,9,11,16,18,20,22‐octaazanonacene‐8,19‐dione (OANQ) has been synthesized and characterized. The as‐prepared OANQ shows high stability under ambient conditions and has a particularly low LUMO level, which leads to it being a promising candidate for air‐stable n‐type field‐effect transistors (FETs). In fact, FET devices based on OANQ single crystals have been fabricated and an electron mobility of up to 0.2 cm2 V?1 s?1 under ambient conditions is reported. More importantly, no obvious degradation was observed even after one month. Theoretical calculations based on the single crystal are consistent with the measured mobility.  相似文献   

7.
In this contribution we introduce an electronic‐structure‐theory‐based approach to a quantum‐chemical thermochemistry of solids. We first deal with local and collective atomic displacements and explain how to calculate these. The fundamental importance of the phonons, their dispersion relations, their experimental determination as well as their calculation is elucidated, followed by the systematic construction of the thermodynamic potentials on this basis. Subsequently, we provide an introduction for practical computation as well as a critical analysis of the level of accuracy obtainable. We then show how different solid‐state chemistry problems can be solved using this approach. Among these are the calculation of activation energies in perovskite‐like oxides, but we also consider the use of theoretical vibrational frequencies for determining crystal structures. The pressure and temperature polymorphism of elemental tin which has often been classically described is also treated, and we energetically classify the metastable oxynitrides of tantalum. We also demonstrate, using the case of high‐temperature superconductors, that such calculations may be used for an independent evaluation of thermochemical data of unsatisfactory accuracy. Finally, we show the present limits and the future challenges of the theory.  相似文献   

8.
N‐Heterocyclic carbenes and their heavier homologues are, in part, stabilized by delocalization of the N lone pairs into the vacant p‐orbital at carbon (or a heavier Group 14 element center). These interactions are usually absent in the corresponding P‐substituted species, owing to the large barrier to planarization of phosphorus. However, judicious selection of the substituents at phosphorus has enabled the synthesis of a diphosphagermylene, [(Dipp)2P]2Ge, in which one of the P centers is planar (Dipp=2,6‐diisopropylphenyl). The planar nature of this P center and the correspondingly short P? Ge distance suggest a significant degree of P? Ge multiple bond character that is due to delocalization of the phosphorus lone pair into the vacant p‐orbital at germanium. DFT calculations support this proposition and NBO and AIM analyses are consistent with a Ge? P bond order greater than unity.  相似文献   

9.
The reactions of 1,3,8,10‐tetrakis(4′‐fluorophenyl)‐4,5,6,7‐tetrathiocino[1,2‐b:3,4‐b′]diimidazolyl‐2,9‐dithione ( 4 ) and molecular diiodine afforded spoke adducts with stoichiometries 4·I2 and 4? 3I2, isolated in the compound 4? 3I2 ? xCH2Cl2 ? (1?x)I2 (x=0.70), and characterized by single‐crystal XRD and FT–Raman spectroscopy. The nature of the reaction products was investigated under the prism of theoretical calculations carried out at the DFT level. The structural data, FT–Raman spectroscopy, and quantum mechanical calculations agree in indicating that the introduction of fluorophenyl substituents results in a lowering of the Lewis basicity of this class of bis(thiocarbonyl) donors compared with alkyl‐substituted tetrathiocino donors and fluorine allows for extended interactions that are responsible for solid‐state crystal packing.  相似文献   

10.
11.
12.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

13.
The acid and transport properties of the anhydrous Keggin‐type 12‐tungstophosphoric acid (H3PW12O40; HPW) have been studied by solid‐state 31P magic‐angle spinning NMR of absorbed trimethylphosphine oxide (TMPO) in conjunction with DFT calculations. Accordingly, 31P NMR resonances arising from various protonated complexes, such as TMPOH+ and (TMPO)2H+ adducts, could be unambiguously identified. It was found that thermal pretreatment of the sample at elevated temperatures (≥423 K) is a prerequisite for ensuring complete penetration of the TMPO guest probe molecule into HPW particles. Transport of the TMPO absorbate into the matrix of the HPW adsorbent was found to invoke a desorption/absorption process associated with the (TMPO)2H+ adducts. Consequently, three types of protonic acid sites with distinct superacid strengths, which correspond to 31P chemical shifts of 92.1, 89.4, and 87.7 ppm, were observed for HPW samples loaded with less than three molecules of TMPO per Keggin unit. Together with detailed DFT calculations, these results support the scenario that the TMPOH+ complexes are associated with protons located at three different terminal oxygen (Od) sites of the PW12O403− polyanions. Upon increasing the TMPO loading to >3.0 molecules per Keggin unit, abrupt decreases in acid strength and the corresponding structural variations were attributed to the change in secondary structure of the pseudoliquid phase of HPW in the presence of excessive guest absorbate.  相似文献   

14.
A riddle solved! Despite its simple formula, the structure of the (SCN)x polymer has remained elusive since its first synthesis in 1929. From energetics as well as NMR chemical shifts, based on DFT calculations, we have strong evidence that it is indeed a tangle of linear chains, made up from N‐linked S2C2N five‐membered rings.

  相似文献   


15.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

16.
Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.  相似文献   

17.
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.  相似文献   

18.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   

19.
A highly chemoselective perfluoroalkylation reaction of aromatic halides is reported. Thermally stable perfluoroalkylzinc reagents, generated by a rapid halogen–zinc exchange reaction between diorganozinc and perfluoroalkyl halide species, couple with a wide range of aryl halides in the presence of a copper catalyst, in moderate to high yields. Good stability of the perfluoroalkylzinc species was indicated by DFT calculation and the reagents were storable for at least three months under argon without loss of activity. This method is applicable to gram‐scale synthesis, and its functional group tolerance compares favorably with reported protocols.  相似文献   

20.
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate‐II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate‐II polytypes is ten times smaller than the difference between the experimentally known 3C‐Ge (α‐Ge) and 4H‐Ge polytypes. The thermoelectric properties of guest‐occupied clathrate‐II structures were investigated for compositions Na–Rb–Ga–Ge and Ge–As–I. The clathrate‐II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号