首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Poly (vinyl acetate), PVAC, synthesized by bulk polymerization over a range of initiator concentrations ([AIBN] = 10?5 to 4 × 10?3 g-mole/1), temperatures (50°C, 60°C, 70°C, and 80°C) and conversion levels (3 to > 90%) were characterized using low angle laser light scattering (LALLS) photometry to measure Mw of the whole polymers. A number of these samples were characterized using GPC with a differential refractive index (DRI) and LALLS detector to measure the molecular weight distribution (weight fraction versus Mw). Mw for PVAC samples synthesized at suitably low initiator levels at various conversions were found to agree with classical light scattering measurements after Graessley.

An electronic device and a technique which optimizes the sensitivity and the signal-to-noise ratio of the LALLS photometer throughout the molecular weight distribution (MWD) of the GPC chromatogram were devised. These considerably simplify the operation of the LALLS for both offline and online operation with GPC.

Most importantly it was unambiguously shown that the commonly used universal calibration parameter (UCP) with GPC, [n]Mw, is incorrect for polymers with molecules having the same hydrodynamic volume but different molecular weights, i. e., those with only chain branching (LCB), copolymers with compositional drift, and polymer blends. The correct UCP was found to  相似文献   

2.
Star‐shaped polybutadiene stars were synthesized by a convergent coupling of polybutadienyllithium with 4‐(chlorodimethylsilyl)styrene (CDMSS). CDMSS was added slowly and continuously to the living anionic chains until a stoichiometric equivalent was reached. Gel permeation chromatography‐multi‐angle laser light scattering (GPC‐MALLS) was used to determine the molecular weights and molecular weight distribution of the polybutadiene polymers. The number of arms incorporated into the star depended on the molecular weight of the initial chains and the rate of addition of the CDMSS. Low molecular weight polybutadiene arms (Mn = 640 g/mol) resulted in polybutadiene star polymers with an average of 12.6 arms, while higher molecular weight polybutadiene arms (Mn = 16,000 g/mol) resulted in polybutadiene star polymers with an average of 5.3 arms. The polybutadiene star polymers exhibited high 1,4‐polybutadiene microstructure (88.3–93.1%), and narrow molecular weight distributions (Mw/Mn = 1.11–1.20). Polybutadiene stars were subsequently hydrogenated by two methods, heterogeneous catalysis (catalytic hydrogenation using Pd/CaCO3) or reaction with p‐toluenesulfonhydrazide (TSH), to transform the polybutadiene stars into polyethylene stars. The hydrogenation of the polybutadiene stars was found to be close to quantitative by 1H NMR and FTIR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 828–836, 2006  相似文献   

3.
A series of monodisperse (Mw/Mn < 1.1) poly(ferrocenyldimethylsilane)s was prepared with number‐averaged degrees of polymerization, 〈zn, of 9, 33, 206, and 506 ( 2 – 5 , respectively), as determined by gel permeation chromatography (GPC). The polymers were studied by small‐angle neutron scattering (SANS) in solution with the aim of obtaining the radius of gyration, Rg, the weight‐averaged molecular weight, Mw, and the polydispersity index, Mw/Mn. Data were collected over the range 0.008 < Q?1 < 0.5 and for a series of concentrations (weight fraction, w = 0.0063, 0.0125, 0.025, and 0.05). The scattered intensity, I(Q), was fitted to a model based on a Schultz–Zimm distribution of isolated chains with excluded volume. A comparison of the molecular weight and size data determined by GPC and SANS indicated an acceptable agreement between the values for Rg, Mw and Mw/Mn. The results of this study demonstrate the potential utility of SANS to fully characterize metallopolymers, and other polymer systems where traditional methods cannot be applied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4011–4020  相似文献   

4.
The aggregation of Erwinia (E) gum in a 0.2 M NaCl aqueous solution was investigated by multi‐angle laser light scattering and gel permeation chromatography (GPC) combined with light scattering. The GPC chromatograms of five fractions contained two peaks; the fractions had the same elution volume but different peak areas, suggesting that aggregates and single chains coexisted in the solution at 25 °C. The apparent weight‐average molecular weights (Mw) of the aggregates and single chains for each fraction were all about 2.1 × 106 and 7.8 × 104, respectively. This indicates that the aggregates were composed of about 27 molecules of E gum in the concentration range used (1.0 × 10−6 to 5.0 × 10−4 g/mL). The weight fraction of the aggregates (wag) increased with increasing concentration, but the aggregates still existed even in an extremely dilute solution. The fractionation process and polymer concentration hardly affected the apparent aggregation number but significantly changed wag. The E‐gum Mw decreased sharply with an increase in temperature. When the E‐gum solution was kept at 100 °C, wag decreased sharply for 20 h and leveled off after 100 h. Once the aggregates were decomposed at a higher temperature, no aggregation was observed in the solution at 25 °C, indicating that the aggregation was irreversible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1352–1358, 2000  相似文献   

5.
Hyperbranched poly(ether nitrile)s were prepared from a novel AB2 type monomer, 2‐chloro‐4‐(3,5‐dihydroxyphenoxy)benzonitrile, via nucleophilic aromatic substitution. Soluble and low‐viscous hyperbranched polymers with molecular weights upto 233,600 (Mw) were isolated. According to the 1H NMR and GPC data, the unique polymerization behavior was observed, which implies that the weight average molecular weight increased after the number average molecular weight reached plateau region. Model compounds were prepared to characterize the branching structure. Spectroscopic measurements of the model compounds and the resulting polymers, such as 1H, DEPT 13C NMR, and MS, strongly suggest that the ether exchange reaction and cyclization are involved in the propagation reaction. The side reactions would affect the unique polymerization behavior. The resulting polymers showed a good solubility in organic solvents similar to other hyperbranched aromatic polymers. The hydroxy‐terminated polymer was even soluble in basic water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5835–5844, 2009  相似文献   

6.
By combining the offline static and dynamic laser light scattering (LLS) and gel permeation chromatography (GPC) results of a broadly distributed polymer sample, we were able to characterize a series of chiral binaphthyl-based polyarylenes and poly(aryleneethnylene)s in THF at 25°C. For each of the samples, we obtained not only the weight-average molar mass Mw, the second virial coefficient A2 and the z-average translational diffusion coefficient 〈D〉, but also two calibrations: V = A + Blog(M) and D = kD M−αD, where V, D, and M are the elution volume, the translational diffusion coefficient and the molar mass for monodisperse polymer chains, respectively, and A, B, kD, and αD are four calibration constants. Using these calibrations, we estimated the molar mass distributions of these novel polymers. We showed that using polystyrene to calibrate the GPC columns could lead to a smaller Mw. Our results indicate that all the polymers studied have a rigid chain conformation in THF at 25°C and the introduction of the —NO2 groups into the monomer can greatly promote the polymer solubility in THF.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2615–2622, 1998  相似文献   

7.
A multiblock copolymer consisting of hard (poly(arylene ether sulfone)) and soft (poly(alkyl disulfide)) segments was successfully synthesized by oxidative coupling of the corresponding thiol‐terminated oligomers. Its structure was confirmed by 1H and 13C NMR spectroscopy. The GPC data (Mw = 82,000, Mw/Mn = 2.7) and inherent viscosity (0.67 dL g−1) indicated the formation of a high‐molecular‐weight multiblock copolymer, while AFM and DSC indicated a microphase‐separated morphology. Tensile testing of the multiblock copolymer films showed a large elongation at break, which is characteristic of microphase‐separated hard/soft multiblock copolymers. Over 90% of the elongation at break of damaged samples (notched or cut) was recovered by UV irradiation. The elongation recovery was proportional to the UV irradiation energy, and the high recovery was achieved by relatively weak irradiation (<170 J cm−2). The high content of disulfide bonds in the multiblock copolymer resulted in a lower self‐healing energy. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1358–1365  相似文献   

8.
N‐(4‐Tetrahydropyranyl‐oxy‐phenyl)maleimide (THPMI) was prepared and polymerized by radical or anionic initiators. THPMI could be polymerized by 2,2′‐azobis(isobutyronitrile) (AIBN) and potassium tert‐butoxide. Radical polymers (poly(THPMI)r) were obtained in 15–50% yields for AIBN in THF at 65°C after 2–5 h. The yield of anionic polymers (poly(THPMI)a) obtained from potassium tert‐butoxide in THF at 0°C after 20 h was 91%. The molecular weights of poly(THPMI)r and poly(THPMI)a were Mn = 2750–3300 (Mw/Mn = 1.2–3.3) and Mn = 11300 (Mw/Mn = 6.0), respectively. The difference in molecular weights of the polymers was due to the differences in the termination mechanism of polymerization and the solubility of these polymers in THF. The thermal decomposition temperatures were 205 and 365°C. The first decomposition step was based on elimination of the tetrahydropyranyl group from the poly(THPMI). Positive image patterns were obtained by chemical amplification of positive photoresist composed of poly(THPMI) and 4‐morpholinophenyl diazonium trifluoromethanesulfonate used as an acid generator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 341–347, 1999  相似文献   

9.
The results of an interlaboratory or round‐robin experiment in high‐temperature gel permeation chromatography (HT‐GPC) analysis are presented. The intention was to determine and raise awareness of interlaboratory reproducibility of HT‐GPC techniques. Fifteen laboratories performed analyses of five polyethylene samples and standards SRM 1475 and 1476. Reproducibility, as measured by the interlaboratory standard deviation (sLAB), was greatly influenced by the breadth of the molecular weight distribution (MWD) and branching. The sLAB values for the weight‐average molecular weight (Mw) of linear polyethylenes of narrow and broad MWDs were 4 and 14%, respectively. For branched polymers, GPC viscometry methods are shown to measure significantly higher molecular weights than the noncoupled GPC method, with higher variance. For branched polyethylenes measured with GPC viscometry, the reproducibility of Mw was characterized by sLAB = 18%. Reproducibility of the SRM 1475 standard was better than for unknowns. The results for branched standard SRM 1476 emphasize the important role of the detection method in GPC but call into question the use of this material as a molecular weight standard. For single‐site polyethylene, only a handful of labs measured an MWD that closely matched the Flory distribution. Qualitatively, the responses indicate that many variations in instrument and analytical methods exist among laboratories; this is partly a reflection of the development and refinements that this technique must yet undergo before a truly standard method is widely accepted and practiced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 905–921, 2002  相似文献   

10.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

11.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

12.
The present article considers the coil‐to‐globule transition behavior of atactic and syndiotactic poly(methyl methacrylates), (PMMA) in their theta solvent, n‐butyl chloride (nBuCl). Changes in Rh in these polymers with temperature in dilute theta solutions were investigated by dynamic light scattering. The hydrodynamic size of atactic PMMA (a‐PMMA‐1) in nBuCl (Mw: 2.55 × 106 g/mol) decreases to 61% of that in the unperturbed state at 13.0°C. Atactic PMMA (a‐PMMA‐2) with higher molecular weight (Mw: 3.3 × 106 g/mol) shows higher contraction in the same theta solvent (αη = Rh(T)/Rh (θ) = 0.44) at a lower temperature, 7.25°C. Although syndiotactic PMMA (s‐PMMA) has lower molecular weight than that of atactic samples (Mw: 1.2 × 106), a comparable chain collapse was observed (αη = 0.63) at 9.0°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2253–2260, 1999  相似文献   

13.
In this study, we demonstrate how the intrinsic properties of a polymer can influence the electrical characteristics of organic field‐effect transistors (OFETs). OFETs fabricated with three batches of poly[2‐methoxy,5‐(3′,7′‐dimethyl‐octyloxy)]‐p‐phenylene vinylene (MDMO‐PPV) were investigated. The properties of the polymers were initially investigated using Fourier transform infrared spectroscopy (FTIR), impedance spectroscopy (IS), gel permeation chromotography (GPC), and cyclic voltammetry (CV), respectively. The structure and purity of the polymer batches were found to be very comparable, but the molecular weight (Mn and Mw) and polydispersity (PDI = Mw/Mn), varied between the samples and the HOMO and LUMO levels of the polymers were found to depend on the molecular weight properties. OFETs were then fabricated with the polymers and electrically characterized. It was observed that the channel current and the field‐effect mobility increase with increasing polymer molecular weight. The output characteristics of the transistors, on the other hand, were found to depend on the PDI of the polymer. Saturation of the channel current occurs at higher source–drain voltages and short‐channel behavior was observed to start at longer channel lengths for polymers with a higher PDI. This behavior is observed to be thickness dependent, and the short‐channel behavior was more pronounced for thicker MDMO‐PPV films. These results are explained in terms of influences of chain packing and ordering and high bulk currents on the FET output and transistor parameters. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 117–124, 2012  相似文献   

14.
A series of light‐emitting hyperbranched poly(arylene ethynylene)s (HB‐PAEs) were prepared by the Sonogashira coupling from bisethynyl of carbazole, fluorene, or dialkoxybenzenes (A2 type) and tris(4‐iodophenyl)amine (B3 type). For comparison, two linear polymers (L‐PAEs) of the HB analogs were also synthesized. The polymers were characterized by Fourier transform infrared, NMR, and GPC. The HB polymers showed excellent solubility in chloroform, THF, and chlorobenzene when compared with their linear analogs. The number‐average molecular weight (Mn) of the polymers determined from GPC was found to be in the range of 18,600–34,200. The polymers were thermally stable up to 298–330 °C with only 5% weight loss. The absorption maxima of the polymers were between 354 and 411 nm with optical band gap in the range of 2.5–2.9 eV. The HB polymers were found to be highly fluorescent with photoluminescence quantum yields around 33–42%. The highest occupied molecular orbital energy levels of the polymers calculated from onset oxidation potentials were found to be in the range from ?5.83 to ?6.20 eV. Electroluminescence (EL) properties of three HB‐PAEs and one L‐PAE were investigated with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. The EL maxima of HB‐PAEs were found to be in the range of 507–558 nm with turn‐on voltages around 7.5–10 V and maximum brightness values of 316–490 cd/m2. At the same time, linear analog of one HB‐PAE was found to show a maximum brightness of 300 cd/m2 at a turn‐on voltage of 8.2 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
High‐molecular‐weight poly(1,4‐butylene carbonate) (PBC) (Mn: 40,000?90,000) was prepared through the condensation polymerization of dimethyl carbonate (DMC) and 1,4‐butanediol (BD) in the presence of 0.05 mol % sodium alkoxide catalyst. The subsequent feeding of 15 mol % HOAOH, such as 1,6‐hexanediol, 1,5‐pentanediol, 1,4‐cyclohexanedimethanol, or 1,4‐benzenedimethanol and stirring at 190–150 °C converted the extremely thick high‐molecular‐weight polymer to low‐molecular‐weight macrodiols with GPC‐measured Mn ~2000. The analysis of the 1H NMR spectra indicated that the –A– units and 1,4‐butylene units were randomly distributed in the resulting oligomers. The chopping of the high‐molecular‐weight PBC using either triols or tetraols such as glycerol propoxylate, 1,1,1‐tris(hydroxymethyl)ethane, or pentaerythritol also afforded macropolyols containing branched chains with GPC‐measured Mn ~2000. When the chopped polymers were genuine PBCs, the resulting macrodiols or polyols were in a waxy state at room temperature. However, permanently oily compounds were obtained when the chopped polymers were prepared using 0.90 mole fraction of BD admixed with various other diols. The macrodiols and polyols synthesized in this study may have potential applications in the polyurethane industry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1570–1580  相似文献   

16.
The accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004  相似文献   

17.
It was first found that (diisopropylamido)bis(methylcyclopentadienyl)lanthanides (MeC5H4)2LnN(i-Pr)2(THF) (Ln = Yb ( 1 ), Er ( 2 ), Y ( 3 )) exhibit extremely high catalytic activity in the polymerization of methyl methacrylate. The reactions can be carried out over a quite broad range of polymerization temperatures from -78 to 40°C. The catalytic activity of the complexes increases with an increase of ionic radii of the metal elements, i.e. Y > Er > Yb. The results of GPC (gel permeation chromatography) indicate that the number-average molecular weights (Mn) of polymers obtained exceed 100 × 103 and the molecular weight distribution (Mw/Mn) becomes broad with the increase of temperature. Furthermore highly syndiotactic PMMA (87.7%) can be obtained by lowering the reaction temperature to −78°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1593–1597, 1998  相似文献   

18.
The synthesis of an AB20‐type heteroarm star polymer consisting of a polystyrene arm and 20‐arms of poly(methyl methacrylate) or poly(tert‐butyl acrylate) was carried out using the combination of nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP). The NMP of styrene was carried out using mono‐6‐[4‐(1′‐(2″,2″,6″,6″‐tetramethyl‐1″‐piperidinyloxy)‐ethyl)benzamido]‐β‐cyclodextrin peracetate ( 1 ) to afford end‐functionalized polystyrene with an acetylated β‐cyclodextrin (β‐CyD) unit (prepolymer 2 ) with a number‐average molecular weight (Mn) of 11700 and a polydispersity (Mw/Mn) of 1.17. After deacetylation of prepolymer 2 , the resulting polymer was reacted with 2‐bromoisobutyric anhydride to give end‐functionalized polystyrene with 20(2‐bromoisobutyrol)s β‐CyD, macroinitiator 4 . The copper (I)‐mediated ATRP of methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) was carried out using macroinitiator 4 . The resulting polymers were isolated by SEC fractionation to produce AB20‐type star polymers with a β‐CyD‐core, 5 . The well‐defined structure of 5 with weight‐average molecular weight (Mw)s of 13,500–65,300 and Mw/Mn's of 1.26–1.28 was demonstrated by SEC and light scattering measurements. The arm polymers were separated from 5 by destruction with 28 wt % sodium methoxide in order to analyze the details of their characteristic structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4271–4279, 2005  相似文献   

19.
付志峰 《高分子科学》2011,29(5):560-568
The polymerization of 1-octene initiated by methylalumoxane(MAO)-activated Ni(Ⅱ)-based-α-diimine complexes[(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 was investigated.Using this catalyst,poly(1-octene)s with molecular weight between 100×103 and 400×103 and polydispersity(Mw/Mn) between 1.3 and 1.5 were synthesized successfully by varying reaction time at room temperature.The poly(1-octene)s were amorphous polymers and could be well soluble in tetrahydrofuran(THF).After fractional precipitation,poly(1-octene)s with narrow molecular weight distributions(Mw/Mn≤1.12) were obtained.Their weight-average molecular weights were measured by gel permeation chromatography(GPC) in conjunction with online model BI-MwA multiangle laser light scattering(MALLS),and their intrinsic viscosities were measured by Maron’s single-point method.The k and a values in Mark-Houwink equation[η]= KMαin THF at 40℃were 0.089 mL/g and 0.61 respectively.  相似文献   

20.
MCl2 (M = Ni, Co, Sn, or Mn) and PPh3 together acted as a catalyst for the radical polymerization of methyl methacrylate (MMA) in the presence of ethyl 2‐bromoisobutyrate as an initiator. The four systems all led to conventional radical polymerizations, which yielded polymers with a weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ratio greater than 2.0 and became well controlled when a certain amount of FeCl3·6H2O was added. The polymerizations of MMA catalyzed by these four FeCl3‐modified catalyst systems provided well‐defined polymers with low polydispersities (Mw/Mn < 1.28). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2625–2631, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号