首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical method is presented for solving the variable coefficient Poisson equation on a two‐dimensional domain in the presence of irregular interfaces across which both the variable coefficients and the solution itself may be discontinuous. The approach involves using piecewise cubic splines to represent the irregular interface, and applying this representation to calculate the volume and area of each cut cell. The fluxes across the cut‐cell faces and the interface faces are evaluated using a second‐order accurate scheme. The deferred correction approach is used, resulting in a computational stencil for the discretized Poisson equation on an irregular (complex) domain that is identical to that obtained on a regular (simple) domain. In consequence, a highly efficient multigrid solver based on the additive correction multigrid (ACM) method can be applied to solve the current discretized equation system. Several test cases (for which exact solutions to the variable coefficient Poisson equation with and without jump conditions are known) have been used to evaluate the new methodology for discretization on an irregular domain. The numerical solutions show that the new algorithm is second‐order accurate as claimed, even in the presence of jump conditions across an interface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A semi‐implicit finite volume model based upon staggered grid is presented for solving shallow water equation. The model employs a time‐splitting scheme that uses a predictor–corrector method for the advection term. The fluxes are calculated based on a Riemann solver in the prediction step and a downwind scheme in the correction step. A simple TVD scheme is employed for shock capturing purposes in which the Minmond limiter is used for flux functions. As a consequence of using staggered grid, an ADI method is adopted for solving the discretized equations for 2‐D problems. Several 1‐D and 2‐D flows have been modeled with satisfactory results when compared with analytical and experimental test cases. The model is also capable of simulating supercritical as well as subcritical flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A fast cosine transform (FCT) is coupled with a tridiagonal solver for the purpose of solving the Poisson equation on irregular and non‐uniform rectangular staggered grids. This kind of solution is required for the pressure field during the simulation of the incompressible Navier–Stokes equations when using the projection method. A new technique using the FCT–tridiagonal solver is derived for the cases where the boundaries of the flow regime do not coincide with the boundaries of the computational domain and for non‐uniform grids. The technique is based on an iterative procedure where a defect equation is solved in every iteration, followed by a relaxation procedure. The method is investigated analytically and numerically to show that the solution converges as a geometric series. The method is further investigated for the effects of the relative size of the rigid body, the grid stretching, size and aspect ratio. The new solver is incorporated with the direct numerical simulation (DNS) and large eddy simulation (LES) techniques to simulate the flows around a backward‐facing step and a 3D rectangular obstacle, yielding results that qualitatively compare well with known results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A novel Navier-Stokes solver based on the boundary integral equation method is presented. The solver can be used to obtain flow solutions in arbitrary 2D geometries with modest computational effort. The vorticity transport equation is modelled as a modified Helmholtz equation with the wave number dependent on the flow Reynolds number. The non-linear inertial terms partly manifest themselves as volume vorticity sources which are computed iteratively by tracking flow trajectories. The integral equation representations of the Helmholtz equation for vorticity and Poisson equation for streamfunction are solved directly for the unknown vorticity boundary conditions. Rapid computation of the flow and vorticity field in the volume at each iteration level is achieved by precomputing the influence coefficient matrices. The pressure field can be extracted from the converged streamfunction and vorticity fields. The solver is validated by considering flow in a converging channel (Hamel flow). The solver is then applied to flow in the annulus of eccentric cylinders. Results are presented for various Reynolds numbers and compared with the literature.  相似文献   

7.
This paper describes the implementation of a numerical solver that is capable of simulating compressible flows of nonideal single‐phase fluids. The proposed method can be applied to arbitrary equations of state and is suitable for all Mach numbers. The pressure‐based solver uses the operator‐splitting technique and is based on the PISO/SIMPLE algorithm: the density, velocity, and temperature fields are predicted by solving the linearized versions of the balance equations using the convective fluxes from the previous iteration or time step. The overall mass continuity is ensured by solving the pressure equation derived from the continuity equation, the momentum equation, and the equation of state. Nonphysical oscillations of the numerical solution near discontinuities are damped using the Kurganov‐Tadmor/Kurganov‐Noelle‐Petrova (KT/KNP) scheme for convective fluxes. The solver was validated using different test cases, where analytical and/or numerical solutions are present or can be derived: (1) A convergent‐divergent nozzle with three different operating conditions; (2) the Riemann problem for the Peng‐Robinson equation of state; (3) the Riemann problem for the covolume equation of state; (4) the development of a laminar velocity profile in a circular pipe (also known as Poiseuille flow); (5) a laminar flow over a circular cylinder; (6) a subsonic flow over a backward‐facing step at low Reynolds numbers; (7) a transonic flow over the RAE 2822 airfoil; and (8) a supersonic flow around a blunt cylinder‐flare model. The spatial approximation order of the scheme is second order. The mesh convergence of the numerical solution was achieved for all cases. The accuracy order for highly compressible flows with discontinuities is close to first order and, for incompressible viscous flows, it is close to second order. The proposed solver is named rhoPimpleCentralFoam and is implemented in the open‐source CFD library OpenFOAM®. For high speed flows, it shows a similar behavior as the KT/KNP schemes (implemented as rhoCentralFoam‐solver, Int. J. Numer. Meth. Fluids 2010), and for flows with small Mach numbers, it behaves like solvers that are based on the PISO/SIMPLE algorithm.  相似文献   

8.
This paper presents an assessment of fast parallel pre‐conditioners for numerical solution of the pressure Poisson equation arising in large eddy simulation of turbulent incompressible flows. Focus is primarily on the pre‐conditioners suitable for domain decomposition based parallel implementation of finite volume solver on non‐uniform structured Cartesian grids. Bi‐conjugate gradient stabilized method has been adopted as the Krylov solver for the linear algebraic system resulting from the discretization of the pressure Poisson equation. We explore the performance of multigrid pre‐conditioner for the non‐uniform grid and compare its performance with additive Schwarz pre‐conditioner, Jacobi and SOR(k) pre‐conditioners. Numerical experiments have been performed to assess the suitability of these pre‐conditioners for a wide range of non‐uniformity (stretching) of the grid in the context of large eddy simulation of a typical flow problem. It is seen that the multigrid preconditioner shows the best performance. Further, the SOR(k) preconditioner emerges as the next best alternative. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A large‐eddy simulation methodology for high performance parallel computation of statistically fully inhomogeneous turbulent flows on structured grids is presented. Strategies and algorithms to improve the memory efficiency as well as the parallel performance of the subgrid‐scale model, the factored scheme, and the Poisson solver on shared‐memory parallel platforms are proposed and evaluated. A novel combination of one‐dimensional red–black/line Gauss–Seidel and two‐dimensional red–black/line Gauss–Seidel methods is shown to provide high efficiency and performance for multigrid relaxation of the Poisson equation. Parallel speedups are measured on various shared‐distributed memory systems. Validations of the code are performed in large‐eddy simulations of turbulent flows through a straight channel and a square duct. Results obtained from the present solver employing a Lagrangian dynamic subgrid‐scale model show good agreements with other available data. The capability of the code for more complex flows is assessed by performing a large‐eddy simulation of the tip‐leakage flow in a linear cascade. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A pseudo‐spectral method for the solution of incompressible flow problems based on an iterative solver involving an implicit treatment of linearized convective terms is presented. The method allows the treatment of moderately complex geometries by means of a multi‐domain approach and it is able to cope with non‐constant fluid properties and non‐orthogonal problem domains. In addition, the fully implicit scheme yields improved stability properties as opposed to semi‐implicit schemes commonly employed. Key components of the method are a Chebyshev collocation discretization, a special pressure–correction scheme, and a restarted GMRES method with a preconditioner derived from a fast direct solver. The performance of the proposed method is investigated by considering several numerical examples of different complexity, and also includes comparisons to alternative solution approaches based on finite‐volume discretizations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered‐mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix‐free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A fourth‐order accurate solution method for the three‐dimensional Helmholtz equations is described that is based on a compact finite‐difference stencil for the Laplace operator. Similar discretization methods for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions. Here, the complicated issue of imposing Neumann boundary conditions is described in detail. The method is then applied to model Helmholtz problems to verify the accuracy of the discretization method. The implementation of the solution method is also described. The Helmholtz solver is used as the basis for a fourth‐order accurate solver for the incompressible Navier–Stokes equations. Numerical results obtained with this Navier–Stokes solver for the temporal evolution of a three‐dimensional instability in a counter‐rotating vortex pair are discussed. The time‐accurate Navier–Stokes simulations show the resolving properties of the developed discretization method and the correct prediction of the initial growth rate of the three‐dimensional instability in the vortex pair. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
An implicit hybrid finite element (FE)/volume solver has been extended to incompressible flows coupled with the energy equation. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centred finite volume (FV) method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centres and the auxiliary variable at vertices. The Generalized Minimal Residual (GMRES) matrix-free strategy is adapted to solve the governing equations in both FE and FV methods. The presented 2D and 3D numerical examples show the robustness and accuracy of the numerical method.  相似文献   

14.
A simple and effective immersed boundary method using volume of body (VOB) function is implemented on unstructured Cartesian meshes. The flow solver is a second‐order accurate implicit pressure‐correction method for the incompressible Navier–Stokes equations. The domain inside the immersed body is viewed as being occupied by the same fluid as outside with a prescribed divergence‐free velocity field. Under this view a fluid–body interface is similar to a fluid–fluid interface encountered in the volume of fluid (VOF) method for the two‐fluid flow problems. The body can thus be identified by the VOB function similar to the VOF function. In fluid–body interface cells the velocity is obtained by a volume‐averaged mixture of body and fluid velocities. The pressure inside the immersed body satisfies the same pressure Poisson equation as outside. To enhance stability and convergence, multigrid methods are developed to solve the difference equations for both pressure and velocity. Various steady and unsteady flows with stationary and moving bodies are computed to validate and to demonstrate the capability of the current method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A semi‐implicit scheme is presented for large eddy simulation of turbulent reactive flow and combustion in reciprocating piston engines. First, the governing equations in a deforming coordinate system are formulated to accommodate the moving piston. The numerical scheme is made up of a fourth‐order central difference for the diffusion terms in the transport equations and a fifth‐order weighted essentially nonoscillatory (WENO) scheme for the convective terms. A second‐ order Adams–Bashforth scheme is used for time integration. For higher density ratios, it is combined with a predictor–corrector scheme. The numerical scheme is explicit for time integration of the transport equations, except for the continuity equation which is used together with the momentum equation to determine the pressure field and velocity field by using a Poisson equation for the pressure correction field. The scheme is aimed at the simulation of low Mach number flows typically found in piston engines. An efficient multigrid method that can handle high grid aspect ratio is presented for solving the pressure correction equation. The numerical scheme is evaluated on two test engines, a laboratory four‐stroke engine with rectangular‐shaped engine geometry where detailed velocity measurements are available, and a modified truck engine with practical cylinder geometry where lean ethanol/air mixture is combusted under a homogeneous charge compression ignition (HCCI) condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an accurate semi‐implicit rotational projection method is introduced to solve the Navier–Stokes equations for incompressible flow simulations. The accuracy of the fractional step procedure is investigated for the standard finite‐difference method, and the discrete forms are presented with arbitrary orders or accuracy. In contrast to the previous semi‐implicit projection methods, herein, an alternative way is proposed to decouple pressure from the momentum equation by employing the principle form of the pressure Poisson equation. This equation is based on the divergence of the convective terms and incorporates the actual pressure in the simulations. As a result, the accuracy of the method is not affected by the common choice of the pseudo‐pressure in the previous methods. Also, the velocity correction step is redefined, and boundary conditions are introduced accordingly. Several numerical tests are conducted to assess the robustness of the method for second and fourth orders of accuracy. The results are compared with the solutions obtained from a typical high‐resolution fully explicit method and available benchmark reports. Herein, the numerical tests are consisting of simulations for the Taylor–Green vortex, lid‐driven square cavity, and vortex–wall interaction. It is shown that the present method can preserve the order of accuracy for both velocity and pressure fields in second‐order and high‐order simulations. Furthermore, a very good agreement is observed between the results of the present method and benchmark simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper the explicit jump immersed interface method (EJIIM) is applied to stationary Stokes flows. The boundary value problem in a general, non‐grid aligned domain is reduced by the EJIIM to a sequence of problems in a rectangular domain, where staggered grid‐based finite differences for velocity and pressure variables are used. Each of these subproblems is solved by the fast Stokes solver, consisting of the pressure equation (known also as conjugate gradient Uzawa) method and a fast Fourier transform‐based Poisson solver. This results in an effective algorithm with second‐order convergence for the velocity and first order for the pressure. In contrast to the earlier versions of the EJIIM, the Dirichlét boundary value problem is solved very efficiently also in the case when the computational domain is not simply connected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号